Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 12: 369-378, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30769282

ABSTRACT

Vaccination approaches have generally focused on the antigen rather than the resultant antibodies generated, which differ greatly in quality and function between individuals. The ability to replace the variable regions of the native B cell receptor (BCR) heavy and light chain loci with defined recombined sequences of a preferred monoclonal antibody could enable curative adoptive cell transfer. We report CRISPR-mediated homologous recombination (HR) into the BCR of primary human B cells. Ribonucleoprotein delivery enabled editing at the model CXCR4 locus, as demonstrated by T7E1 assay, flow cytometry, and TIDE analysis. Insertion via HR was confirmed by sequencing, cross-boundary PCR, and restriction digest. Optimized conditions were used to achieve HR at the BCR variable heavy and light chains. Insertion was confirmed at the DNA level, and transgene expression from the native BCR promoters was observed. Reprogramming the specificity of antibodies in the genomes of B cells could have clinical importance.

2.
EMBO Mol Med ; 7(8): 1048-62, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26070712

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer fatalities in Western societies, characterized by high metastatic potential and resistance to chemotherapy. Critical molecular mechanisms of these phenotypical features still remain unknown, thus hampering the development of effective prognostic and therapeutic measures in PDAC. Here, we show that transcriptional co-factor Transducin beta-like (TBL) 1 was over-expressed in both human and murine PDAC. Inactivation of TBL1 in human and mouse pancreatic cancer cells reduced cellular proliferation and invasiveness, correlating with diminished glucose uptake, glycolytic flux, and oncogenic PI3 kinase signaling which in turn could rescue TBL1 deficiency-dependent phenotypes. TBL1 deficiency both prevented and reversed pancreatic tumor growth, mediated transcriptional PI3 kinase inhibition, and increased chemosensitivity of PDAC cells in vivo. As TBL1 mRNA levels were also found to correlate with PI3 kinase levels and overall survival in a cohort of human PDAC patients, TBL1 was identified as a checkpoint in the malignant behavior of pancreatic cancer and its expression may serve as a novel molecular target in the treatment of human PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Transducin/metabolism , Animals , Gene Expression Profiling , Humans , Mice , Survival Analysis , Transducin/deficiency
3.
Mol Metab ; 3(2): 155-66, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24634828

ABSTRACT

Disturbances in lipid homeostasis are hallmarks of severe metabolic disorders and their long-term complications, including obesity, diabetes, and atherosclerosis. Whereas elevation of triglyceride (TG)-rich very-low-density lipoproteins (VLDL) has been identified as a risk factor for cardiovascular complications, high-density lipoprotein (HDL)-associated cholesterol confers atheroprotection under obese and/or diabetic conditions. Here we show that hepatocyte-specific deficiency of transcription factor transforming growth factor ß 1-stimulated clone (TSC) 22 D1 led to a substantial reduction in HDL levels in both wild-type and obese mice, mediated through the transcriptional down-regulation of the HDL formation pathway in liver. Indeed, overexpression of TSC22D1 promoted high levels of HDL cholesterol in healthy animals, and hepatic expression of TSC22D1 was found to be aberrantly regulated in disease models of opposing energy availability. The hepatic TSC22D1 transcription factor complex may thus represent an attractive target in HDL raising strategies in obesity/diabetes-related dyslipidemia and atheroprotection.

4.
Proc Natl Acad Sci U S A ; 110(45): E4203-12, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24145406

ABSTRACT

Excessive genome damage activates the apoptosis response. Protein kinase HIPK2 is a key regulator of DNA damage-induced apoptosis. Here, we deciphered the molecular mechanism of HIPK2 activation and show its relevance for DNA damage-induced apoptosis in cellulo and in vivo. HIPK2 autointeracts and site-specifically autophosphorylates upon DNA damage at Thr880/Ser882. Autophosphorylation regulates HIPK2 activity and mutation of the phosphorylation-acceptor sites deregulates p53 Ser46 phosphorylation and apoptosis in cellulo. Moreover, HIPK2 autophosphorylation is conserved between human and zebrafish and is important for DNA damage-induced apoptosis in vivo. Mechanistically, autophosphorylation creates a binding signal for the phospho-specific isomerase Pin1. Pin1 links HIPK2 activation to its stabilization by inhibiting HIPK2 polyubiquitination and modulating Siah-1-HIPK2 interaction. Concordantly, Pin1 is required for DNA damage-induced HIPK2 stabilization and p53 Ser46 phosphorylation and is essential for induction of apotosis both in cellulo and in zebrafish. Our results identify an evolutionary conserved mechanism regulating DNA damage-induced apoptosis.


Subject(s)
Apoptosis/physiology , Carrier Proteins/metabolism , DNA Damage/physiology , Enzyme Activation/physiology , Peptidylprolyl Isomerase/metabolism , Protein Serine-Threonine Kinases/metabolism , Cell Line , Genetic Vectors , Humans , Microscopy, Fluorescence , NIMA-Interacting Peptidylprolyl Isomerase , Phosphorylation , RNA Interference , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...