Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
PLoS One ; 14(9): e0222584, 2019.
Article in English | MEDLINE | ID: mdl-31527915

ABSTRACT

The present study reports on observations carried out in the Tropical North Atlantic in summer and autumn 2017, documenting Sargassum aggregations using both ship-deck observations and satellite sensor observations at three resolutions (MSI-10 m, OLCI-300 m, VIIRS-750 m and MODIS-1 km). Both datasets reported that in summer, Sargassum aggregations were mainly observed off Brazil and near the Caribbean Islands, while they accumulated near the African coast in autumn. Based on in situ observations, we propose a five-class typology allowing standardisation of the description of in situ Sargassum raft shapes and sizes. The most commonly observed Sargassum raft type was windrows, but large rafts composed of a quasi-circular patch hundreds of meters wide were also observed. Satellite imagery showed that these rafts formed larger Sargassum aggregations over a wide range of scales, with smaller aggregations (of tens of m2 area) nested within larger ones (of hundreds of km2). Match-ups between different satellite sensors and in situ observations were limited for this dataset, mainly because of high cloud cover during the periods of observation. Nevertheless, comparisons between the two datasets showed that satellite sensors successfully detected Sargassum abundance and aggregation patterns consistent with in situ observations. MODIS and VIIRS sensors were better suited to describing the Sargassum aggregation distribution and dynamics at Atlantic scale, while the new sensors, OLCI and MSI, proved their ability to detect Sargassum aggregations and to describe their (sub-) mesoscale nested structure. The high variability in raft shape, size, thickness, depth and biomass density observed in situ means that caution is called for when using satellite maps of Sargassum distribution and biomass estimation. Improvements would require additional in situ and airborne observations or very high-resolution satellite imagery.


Subject(s)
Sargassum/growth & development , Atlantic Ocean , Biomass , Brazil , Satellite Imagery/methods , Seasons , West Indies
2.
Sci Data ; 4: 160128, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28094798

ABSTRACT

The water vapour isotopic composition (1H216O, H218O and 1H2H16O) of the Atlantic marine boundary layer has been measured from 5 research vessels between 2012 and 2015. Using laser spectroscopy analysers, measurements have been carried out continuously on samples collected 10-20 meter above sea level. All the datasets have been carefully calibrated against the international VSMOW-SLAP scale following the same protocol to build a homogeneous dataset covering the Atlantic Ocean between 4°S to 63°N. In addition, standard meteorological variables have been measured continuously, including sea surface temperatures using calibrated Thermo-Salinograph for most cruises. All calibrated observations are provided with 15-minute resolution. We also provide 6-hourly data to allow easier comparisons with simulations from the isotope-enabled Global Circulation Models. In addition, backwards trajectories from the HYSPLIT model are supplied every 6-hours for the position of our measurements.

3.
Sci Data ; 2: 150054, 2015.
Article in English | MEDLINE | ID: mdl-26504523

ABSTRACT

French Research vessels have been collecting thermo-salinometer (TSG) data since 1999 to contribute to the Global Ocean Surface Underway Data (GOSUD) programme. The instruments are regularly calibrated and continuously monitored. Water samples are taken on a daily basis by the crew and later analysed in the laboratory. We present here the delayed mode processing of the 2001-2013 dataset and an overview of the resulting quality. Salinity measurement error was a few hundredths of a unit or less on the practical salinity scale (PSS), due to careful calibration and instrument maintenance, complemented with a rigorous adjustment on water samples. In a global comparison, these data show excellent agreement with an ARGO-based salinity gridded product. The Sea Surface Salinity and Temperature from French REsearch SHips (SSST-FRESH) dataset is very valuable for the 'calibration and validation' of the new satellite observations delivered by the Soil Moisture and Ocean Salinity (SMOS) and Aquarius missions.

SELECTION OF CITATIONS
SEARCH DETAIL
...