Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(21): 9602-9609, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38507258

ABSTRACT

The synthesis, luminescence, and electrochemical properties of the Ce(III) compound, [(C5Me5)2(2,6-iPr2C6H3O)Ce(THF)], 1, were investigated. Based on the electrochemical data, treatment of 1 with CuX (X = Cl, Br, I) results in the formation of the corresponding Ce(IV) complexes, [(C5Me5)2(2,6-iPr2C6H3O)Ce(X)]. Each complex has been characterized using NMR, IR, and UV-vis spectroscopy as well as structurally determined using X-ray crystallography. Additionally, the treatment of [(C5Me5)2(2,6-iPr2C6H3O)Ce(Br)] with AgF results in the formation of the putative [(C5Me5)2(2,6-iPr2C6H3O)Ce(F)]. The electronic structure of these Ce(IV)-X complexes was investigated by bond analyses and the Ce(IV)-F moiety using quantum chemistry NMR calculations.

2.
Chem Commun (Camb) ; 60(23): 3190-3193, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38415283

ABSTRACT

The bis(yldiide) mercury complex, (L-Hg-L) [L = C(PPh3)P(S)Ph2], is prepared from the corresponding potassium yldiide and used to access the first substituted yldiide actinide complexes [(C5Me5)2An(L)(Cl)] (An = U, Th) via salt metathesis. Compared to previously reported phosphinocarbene complexes, the complexes exhibit long actinide-carbon distances, which can be explained by the strong polarization of the π-electron density toward carbon.

3.
Inorg Chem ; 61(43): 17101-17108, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36240111

ABSTRACT

In efforts to study the periodic chemical properties of the rare earth elements and their structural chemistry, a hybrid double perovskite phase A2B'BX6 with the formula ((CH3)4N)2KLn(NO3)6 (Ln = La-Lu, Y ex. Pm) was synthesized that crystallizes in the cubic space group, Fm3̅m. This series was obtained via evaporative crystallization from a mixture of Ln(NO3)3, KNO3, and (CH3)4N·NO3 in a 1:1:2 ratio from either H2O or 4.0 M HNO3. In this double perovskite structure, the B site containing the lanthanide ion is coordinated by six bidentate nitrate ligands, with the distal N═O oxygen atoms coordinating the potassium on the B' site in an octahedral six-coordinate environment. The two remaining charge-compensating (CH3)4N+ cations occupy the interstitial voids in the lattice on the A site. This periodic series was characterized via single-crystal X-ray diffraction, powder X-ray diffraction, IR, and Raman spectroscopy. Emission spectra of the Eu complex indicate a phase transition to trigonal symmetry upon cooling. This series is unique as it represents a rare isostructural series spanning the entirety of the rare earth elements excluding promethium with homoleptic 12-coordinate rare earth metal ions.

SELECTION OF CITATIONS
SEARCH DETAIL
...