Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 327
Filter
1.
J Infect Dis ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743457

ABSTRACT

BACKGROUND: Monoclonal antibodies (mAbs) are utilized broadly to treat cancer and infectious diseases, and mAb exposure (serum concentration over time) is one predictor of overall treatment efficacy. Herein, we present findings from a clinical trial evaluating the pharmacokinetics (PK) of the long-acting mAb sotrovimab targeting SARS-CoV-2 in hematopoietic cell transplant (HCT) recipients. METHODS: All participants received an intravenous infusion of sotrovimab within one week prior to initiating the pre-transplant preparative regimen. The serum concentration of sotrovimab was measured longitudinally for up to 24 weeks post-transplant. RESULTS: Compared to non-HCT participants, we found that mAb clearance was 10% and 26% higher in autologous and allogeneic HCT recipients, respectively. Overall sotrovimab exposure was approximately 15% lower in HCT recipients compared to non-HCT recipients. Exposure was significantly reduced in HCT recipients who developed diarrhea and lower gastrointestinal (GI) graft-versus-host disease (GVHD) post-transplant. CONCLUSIONS: These data show that sotrovimab exposure may be reduced in HCT recipients, possibly related to increased GI clearance in patients with GVHD. This phenomenon has implications for dose selection and duration of efficacy with sotrovimab and potentially other mAbs in this vulnerable patient population. Thus, mAb dose regimens developed in non-HCT populations may have to be optimized when applied to HCT populations.

2.
J Infect Dis ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716969

ABSTRACT

BACKGROUND: Monoclonal antibodies (mAbs) represent a crucial antiviral strategy for SARS-CoV-2 infection, but it is unclear whether combination mAbs offer a benefit over single-active mAb treatment. Amubarvimab and romlusevimab significantly reduced the risk of hospitalizations or death in the ACTIV-2/A5401 trial. Certain SARS-CoV-2 variants are intrinsically resistant against romlusevimab, leading to only single-active mAb therapy with amubarvimab in these variants. We evaluated virologic outcomes in individuals treated with single- versus dual-active mAbs. METHODS: Participants were non-hospitalized adults at higher risk of clinical progression randomized to amubarvimab plus romlusevimab or placebo. Quantitative SARS-CoV-2 RNA levels and targeted S gene next-generation sequencing was performed on anterior nasal samples. We compared viral load kinetics and resistance emergence between individuals treated with effective single- versus dual-active mAbs depending on the infecting variant. RESULTS: Study participants receiving single- and dual-active mAbs had similar demographics, baseline nasal viral load, symptom score, and symptom duration. Compared to single-active mAb, treatment with dual-active mAbs led to faster viral load decline at study day 3 (p < 0.001) and day 7 (p < 0.01). Treatment-emergent resistance mutations were more likely to be detected after amubarvimab plus romlusevimab treatment than placebo (2.6% vs 0%, P < 0.001), and more frequently detected in the setting of single-active compared to dual-active mAb treatment (7.2% vs 1.1%, p < 0.01). Single-active and dual-active mAb treatment resulted in similar decrease in rates of hospitalizations or death. CONCLUSION: Compared to single-active mAb therapy, dual-active mAbs led to similar clinical outcomes, but significantly faster viral load decline and a lower risk of emergent resistance.

3.
Nat Commun ; 15(1): 3207, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615031

ABSTRACT

Knockout of the ORF8 protein has repeatedly spread through the global viral population during SARS-CoV-2 evolution. Here we use both regional and global pathogen sequencing to explore the selection pressures underlying its loss. In Washington State, we identified transmission clusters with ORF8 knockout throughout SARS-CoV-2 evolution, not just on novel, high fitness viral backbones. Indeed, ORF8 is truncated more frequently and knockouts circulate for longer than for any other gene. Using a global phylogeny, we find evidence of positive selection to explain this phenomenon: nonsense mutations resulting in shortened protein products occur more frequently and are associated with faster clade growth rates than synonymous mutations in ORF8. Loss of ORF8 is also associated with reduced clinical severity, highlighting the diverse clinical impacts of SARS-CoV-2 evolution.


Subject(s)
COVID-19 , SARS-CoV-2 , Selection, Genetic , Humans , Phylogeny , SARS-CoV-2/genetics , Viral Proteins/genetics , Selection, Genetic/genetics
4.
J Infect Dis ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657001

ABSTRACT

BACKGROUND: Although antivirals remain important for the treatment COVID-19, methods to assess treatment efficacy are lacking. Here, we investigated the impact of remdesivir on viral dynamics and their contribution to understanding antiviral efficacy in the multicenter ACTT-1 clinical trial that randomized patients to remdesivir or placebo. METHODS: Longitudinal specimens collected during hospitalization from a substudy of 642 COVID-19 patients were measured for viral RNA (upper respiratory tract and plasma), viral nucleocapsid antigen (serum), and host immunologic markers. Associations with clinical outcomes and response to therapy were assessed. RESULTS: Higher baseline plasma viral loads were associated with poorer clinical outcomes, and decreases in viral RNA and antigen in blood but not the upper respiratory tract correlated with enhanced benefit from remdesivir. The treatment effect of remdesivir was most pronounced in patients with elevated baseline nucleocapsid antigen levels: the recovery rate ratio was 1.95 (95%CI 1.40-2.71) for levels >245 pg/ml vs 1.04 (95%CI 0.76-1.42) for levels < 245 pg/ml. Remdesivir also accelerated the rate of viral RNA and antigen clearance in blood, and patients whose blood levels decreased were more likely to recover and survive. CONCLUSIONS: Reductions in SARS-CoV-2 RNA and antigen levels in blood correlated with clinical benefit from antiviral therapy.

5.
J Clin Microbiol ; : e0026324, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687020

ABSTRACT

Herpes simplex virus (HSV) infections are one of the most common and stigmatized infections of humankind, affecting more than 4 billion people around the world and more than 100 million Americans. Yet, most people do not know their infection status, and antibody testing is not recommended, partly due to poor test performance. Here, we compared the test performance of the Roche Elecsys HSV-1 IgG and HSV-2 IgG, DiaSorin LIAISON HSV-1/2 IgG, and Bio-Rad BioPlex 2200 HSV-1 and HSV-2 IgG assays with the gold-standard HSV western blot in 1,994 persons, including 1,017 persons with PCR or culture-confirmed HSV-1 and/or HSV-2 infection. Across all samples, the Bio-Rad and Roche assays had similar performance metrics with low sensitivity (<85%) but high specificity (>97%) for detecting HSV-1 IgG and both high sensitivity (>97%) and high specificity (>98%) for detecting HSV-2 IgG. The DiaSorin assay had a higher sensitivity (92.1%) but much lower specificity (88.7%) for detecting HSV-1 IgG and comparatively poor sensitivity (94.5%) and specificity (94.2%) for detecting HSV-2 IgG. The DiaSorin assay performed poorly at low-positive index values with 60.9% of DiaSorin HSV-1 results and 20.8% of DiaSorin HSV-2 results with positive index values <3.0 yielding false positive results. Based on an estimated HSV-2 seroprevalence of 12% in the United States, positive predictive values for HSV-2 IgG were 96.1% for Roche, 87.4% for Bio-Rad, and 69.0% for DiaSorin, meaning nearly one of every three positive DiaSorin HSV-2 IgG results would be falsely positive. Further development in HSV antibody diagnostics is needed to provide appropriate patient care.IMPORTANCESerological screening for HSV infections is currently not recommended in part due to the poor performance metrics of widely used commercial HSV-1 and HSV-2 IgG assays. Here, we compare three Food and Drug Administration (FDA)-cleared automated HSV-1 and HSV-2 IgG assays to the gold-standard western blot across nearly 2,000 samples. We find that not all commercially available HSV assays are created equal, with comparably low sensitivities for HSV-1 IgG across platforms and high false positivity rates for DiaSorin on HSV-2 IgG. This study is the first large-scale comparison of performance metrics for the Bio-Rad and Roche assays in over 10 years. Our study confirms that there remains room for improvement in HSV serological diagnostic testing-especially in regard to low sensitivities for HSV-1 IgG detection-and highlights that some previously less-studied assays may have better performance metrics than previously considered typical of commercially available HSV-2 IgG assays.

6.
bioRxiv ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38559000

ABSTRACT

The evolution of SARS-CoV-2 variants and their respective phenotypes represents an important set of tools to understand basic coronavirus biology as well as the public health implications of individual mutations in variants of concern. While mutations outside of Spike are not well studied, the entire viral genome is undergoing evolutionary selection, particularly the central disordered linker region of the nucleocapsid (N) protein. Here, we identify a mutation (G215C), characteristic of the Delta variant, that introduces a novel cysteine into this linker domain, which results in the formation of a disulfide bond and a stable N-N dimer. Using reverse genetics, we determined that this cysteine residue is necessary and sufficient for stable dimer formation in a WA1 SARS-CoV-2 background, where it results in significantly increased viral growth both in vitro and in vivo. Finally, we demonstrate that the N:G215C virus packages more nucleocapsid per virion and that individual virions are larger, with elongated morphologies.

7.
Nat Commun ; 15(1): 2175, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467646

ABSTRACT

In the ENSEMBLE randomized, placebo-controlled phase 3 trial (NCT04505722), estimated single-dose Ad26.COV2.S vaccine efficacy (VE) was 56% against moderate to severe-critical COVID-19. SARS-CoV-2 Spike sequences were determined from 484 vaccine and 1,067 placebo recipients who acquired COVID-19. In this set of prespecified analyses, we show that in Latin America, VE was significantly lower against Lambda vs. Reference and against Lambda vs. non-Lambda [family-wise error rate (FWER) p < 0.05]. VE differed by residue match vs. mismatch to the vaccine-insert at 16 amino acid positions (4 FWER p < 0.05; 12 q-value ≤ 0.20); significantly decreased with physicochemical-weighted Hamming distance to the vaccine-strain sequence for Spike, receptor-binding domain, N-terminal domain, and S1 (FWER p < 0.001); differed (FWER ≤ 0.05) by distance to the vaccine strain measured by 9 antibody-epitope escape scores and 4 NTD neutralization-impacting features; and decreased (p = 0.011) with neutralization resistance level to vaccinee sera. VE against severe-critical COVID-19 was stable across most sequence features but lower against the most distant viruses.


Subject(s)
Ad26COVS1 , COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Vaccine Efficacy , Amino Acids , Antibodies, Viral , Antibodies, Neutralizing
8.
Clin Infect Dis ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427848

ABSTRACT

BACKGROUND: Hematopoietic cell transplant (HCT) or chimeric antigen receptor T cell (CAR-T) therapy recipients have high morbidity from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There are limited data on outcomes from SARS-CoV-2 infection shortly before cellular therapy and uncertainty whether to delay therapy. METHODS: We conducted a retrospective cohort study of patients with SARS-CoV-2 infection within 90 days prior to HCT or CAR-T therapy between January 2020 and November 2022. We characterized the kinetics of SARS-CoV-2 detection, clinical outcomes following cellular therapy, and impact on delays in cellular therapy. RESULTS: We identified 37 patients (n=15 allogeneic HCT, n=11 autologous HCT, n=11 CAR-T therapy) with SARS-CoV-2 infections within 90 days of cellular therapy. Most infections (73%) occurred between March and November 2022, when Omicron strains were prevalent. Most patients had asymptomatic (27%) or mild (68%) coronavirus disease 2019 (COVID-19). SARS-CoV-2 positivity lasted a median of 20.0 days [IQR, 12.5-26.25]. The median time from first positive SARS-CoV-2 test to cellular therapy was 45 days [IQR, 37.75-70]; one patient tested positive on the day of infusion. After cellular therapy, no patients had recrudescent SARS-CoV-2 infection or COVID-19-related complications. Cellular therapy delays related to SARS-CoV-2 infection occurred in 70% of patients for a median of 37 days. Delays were more common after allogeneic (73%) and autologous (91%) HCT compared to CAR-T cell therapy (45%). CONCLUSIONS: Patients with asymptomatic or mild COVID-19 may not require prolonged delays in cellular therapy in the context of contemporary circulating variants and availability of antiviral therapies.

9.
bioRxiv ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38464313

ABSTRACT

Background: Histologic and serologic studies suggest the induction of local and systemic Treponema pallidum ( Tp )-specific CD4+ T cell responses to Tp infection. We hypothesized that Tp -specific CD4+ T cells are detectable in blood and in the skin rash of secondary syphilis and persist in both compartments after treatment. Methods: PBMC collected from 67 participants were screened by IFNγ ELISPOT response to Tp sonicate. Tp -reactive T cell lines from blood and skin were probed for responses to 88 recombinant Tp antigens. Peptide epitopes and HLA class II restriction were defined for selected antigens. Results: We detected CD4+ T cell responses to Tp sonicate ex vivo. Using Tp -reactive T cell lines we observed recognition of 14 discrete proteins, 13 of which localize to bacterial membranes or the periplasmic space. After therapy, Tp -specific T cells persisted for at least 6 months in skin and 10 years in blood. Conclusions: Tp infection elicits an antigen-specific CD4+ T cell response in blood and skin. Tp -specific CD4+ T cells persist as memory in both compartments long after curative therapy. The Tp antigenic targets we identified may be high priority vaccine candidates.

10.
PLoS Pathog ; 20(3): e1012117, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38530853

ABSTRACT

SARS-CoV-2 transmission is largely driven by heterogeneous dynamics at a local scale, leaving local health departments to design interventions with limited information. We analyzed SARS-CoV-2 genomes sampled between February 2020 and March 2022 jointly with epidemiological and cell phone mobility data to investigate fine scale spatiotemporal SARS-CoV-2 transmission dynamics in King County, Washington, a diverse, metropolitan US county. We applied an approximate structured coalescent approach to model transmission within and between North King County and South King County alongside the rate of outside introductions into the county. Our phylodynamic analyses reveal that following stay-at-home orders, the epidemic trajectories of North and South King County began to diverge. We find that South King County consistently had more reported and estimated cases, COVID-19 hospitalizations, and longer persistence of local viral transmission when compared to North King County, where viral importations from outside drove a larger proportion of new cases. Using mobility and demographic data, we also find that South King County experienced a more modest and less sustained reduction in mobility following stay-at-home orders than North King County, while also bearing more socioeconomic inequities that might contribute to a disproportionate burden of SARS-CoV-2 transmission. Overall, our findings suggest a role for local-scale phylodynamics in understanding the heterogeneous transmission landscape.


Subject(s)
COVID-19 , Epidemics , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Washington/epidemiology
11.
PLoS Pathog ; 20(2): e1011993, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38300953

ABSTRACT

Pre-existing or rapidly emerging resistance of influenza viruses to approved antivirals makes the development of novel therapeutics to mitigate seasonal influenza and improve preparedness against future influenza pandemics an urgent priority. We have recently identified the chain-terminating broad-spectrum nucleoside analog clinical candidate 4'-fluorouridine (4'-FlU) and demonstrated oral efficacy against seasonal, pandemic, and highly pathogenic avian influenza viruses in the mouse and ferret model. Here, we have resistance-profiled 4'-FlU against a pandemic A/CA/07/2009 (H1N1) (CA09). In vitro viral adaptation yielded six independently generated escape lineages with distinct mutations that mediated moderate resistance to 4'-FlU in the genetically controlled background of recombinant CA09 (recCA09). Mutations adhered to three distinct structural clusters that are all predicted to affect the geometry of the active site of the viral RNA-dependent RNA polymerase (RdRP) complex for phosphodiester bond formation. Escape could be achieved through an individual causal mutation, a combination of mutations acting additively, or mutations functioning synergistically. Fitness of all resistant variants was impaired in cell culture, and all were attenuated in the mouse model. Oral 4'-FlU administered at lowest-efficacious (2 mg/kg) or elevated (10 mg/kg) dose overcame moderate resistance when mice were inoculated with 10 LD50 units of parental or resistant recCA09, demonstrated by significantly reduced virus load and complete survival. In the ferret model, invasion of the lower respiratory tract by variants representing four adaptation lineages was impaired. Resistant variants were either transmission-incompetent, or spread to untreated sentinels was fully blocked by therapeutic treatment of source animals with 4'-FlU.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Uracil Nucleotides , Animals , Mice , Humans , Influenza A virus/genetics , Antiviral Agents/therapeutic use , Influenza A Virus, H1N1 Subtype/genetics , Ferrets , Orthomyxoviridae Infections/drug therapy
12.
Nat Commun ; 15(1): 1189, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331906

ABSTRACT

Measles cases have surged pre-COVID-19 and the pandemic has aggravated the problem. Most measles-associated morbidity and mortality arises from destruction of pre-existing immune memory by measles virus (MeV), a paramyxovirus of the morbillivirus genus. Therapeutic measles vaccination lacks efficacy, but little is known about preserving immune memory through antivirals and the effect of respiratory disease history on measles severity. We use a canine distemper virus (CDV)-ferret model as surrogate for measles and employ an orally efficacious paramyxovirus polymerase inhibitor to address these questions. A receptor tropism-intact recombinant CDV with low lethality reveals an 8-day advantage of antiviral treatment versus therapeutic vaccination in maintaining immune memory. Infection of female ferrets with influenza A virus (IAV) A/CA/07/2009 (H1N1) or respiratory syncytial virus (RSV) four weeks pre-CDV causes fatal hemorrhagic pneumonia with lung onslaught by commensal bacteria. RNAseq identifies CDV-induced overexpression of trefoil factor (TFF) peptides in the respiratory tract, which is absent in animals pre-infected with IAV. Severe outcomes of consecutive IAV/CDV infections are mitigated by oral antivirals even when initiated late. These findings validate the morbillivirus immune amnesia hypothesis, define measles treatment paradigms, and identify priming of the TFF axis through prior respiratory infections as risk factor for exacerbated morbillivirus disease.


Subject(s)
Distemper Virus, Canine , Influenza A Virus, H1N1 Subtype , Measles , Animals , Female , Ferrets , Measles/complications , Measles virus/genetics , Distemper Virus, Canine/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
13.
Sex Transm Dis ; 51(5): 342-347, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38301634

ABSTRACT

BACKGROUND: How often mpox causes asymptomatic infections, particularly among persons who have received the Modified Vaccinia Ankara (MVA) vaccine, is unknown. METHODS: We performed mpox polymerase chain reaction testing on rectal and pharyngeal specimens collected from symptomatic and asymptomatic patients at a sexual health clinic in Seattle, WA, between May 2022 and May 2023. Analyses evaluated the prevalence of asymptomatic or subclinical infection and, among persons with polymerase chain reaction-positive tests, the association of MVA vaccination status with the symptomatic infection. RESULTS: The study population included 1663 persons tested for mpox during 2353 clinic visits. Ninety-three percent of study participants were cisgender men and 96% were men who have sex with men. A total of 198 symptomatic patients (30%) had a first mpox-positive test during 664 visits. Eighteen patients (1.1%) tested during 1689 visits had asymptomatic or subclinical mpox based on a positive rectal or pharyngeal test done in the absence of testing done because of clinical suspicion for mpox. Fourteen (78%) of 18 persons with asymptomatic/subclinical mpox and 53 (26%) of 198 persons with symptomatic mpox had received at least 1 dose of the MVA vaccine ( P < 0.0001). Controlling for calendar month, study subjects who received 1 and 2 doses of MVA vaccine were 4.4 (95% confidence interval, 1.3-15) and 11.9 (3.6-40) times more likely to have asymptomatic versus symptomatic mpox, respectively, than persons who were unvaccinated. CONCLUSIONS: Asymptomatic mpox is uncommon. Modified Vaccinia Ankara vaccination is associated with an asymptomatic/subclinical infection among persons with mpox.


Subject(s)
Mpox (monkeypox) , Sexual and Gender Minorities , Vaccines , Vaccinia , Male , Humans , Female , Asymptomatic Infections/epidemiology , Homosexuality, Male , Vaccinia virus/genetics
15.
Open Forum Infect Dis ; 11(2): ofad673, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38379566

ABSTRACT

We evaluated the immunologic response to a novel vaccine regimen that included 2 doses of NVX-CoV2373 (Novavax) followed by 1 dose of BNT162b2 (Pfizer-BioNTech) monovalent booster vaccine. A durable neutralizing antibody response to Omicron BA.4/BA.5 and BA.1 variants was observed at month 6 after the booster, while immune escape was noted for the XBB.1.5 variant.

16.
J Virol ; 98(1): e0179123, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38168672

ABSTRACT

In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases. Decades of research uniquely positioned the US to be able to respond to the COVID-19 crisis with astounding speed, delivering life-saving vaccines within a year of identifying the virus. We should embolden and empower this strength, which is a vital part of protecting the health, economy, and security of US citizens. Herein, we offer our perspectives on priorities for revised rules governing virology research in the US.


Subject(s)
Biomedical Research , Containment of Biohazards , Virology , Humans , COVID-19 , United States , Viruses , Biomedical Research/standards
18.
Lancet Infect Dis ; 24(4): 404-416, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38211601

ABSTRACT

BACKGROUND: Management of syphilis, a sexually transmitted infection (STI) with increasing incidence, is challenged by drug shortages, scarcity of randomised trial data, an absence of non-penicillin alternatives for pregnant women with penicillin allergy (other than desensitisation), extended parenteral administration for neurosyphilis and congenital syphilis, and macrolide resistance. Linezolid was shown to be active against Treponema pallidum, the causative agent of syphilis, in vitro and in the rabbit model. We aimed to assess the efficacy of linezolid for treating early syphilis in adults compared with the standard of care benzathine penicillin G (BPG). METHODS: We did a multicentre, open-label, non-inferiority, randomised controlled trial to assess the efficacy of linezolid for treating early syphilis compared with BPG. We recruited participants with serological or molecular confirmation of syphilis (either primary, secondary, or early latent) at one STI unit in a public hospital and two STI community clinics in Catalonia (Spain). Participants were randomly allocated in a 1:1 ratio using a computer-generated block randomisation list with six participants per block, to receive either oral linezolid (600 mg once per day for 5 days) or intramuscular BPG (single dose of 2·4 million international units) and were assessed for signs and symptoms (once per week until week 6 and at week 12, week 24, and week 48) and reagin titres of non-treponemal antibodies (week 12, week 24, and week 48). The primary endpoint was treatment response, assessed using a composite endpoint that included clinical response, serological response, and absence of relapse. Clinical response was assessed at 2 weeks for primary syphilis and at 6 weeks for secondary syphilis following treatment initiation. Serological cure was defined as a four-fold decline in rapid plasma reagin titre or seroreversion at any of the 12-week, 24-week, or 48-week timepoints. The absence of relapse was defined as the presence of different molecular sequence types of T pallidum in recurrent syphilis. Non-inferiority was shown if the lower limit of the two-sided 95% CI for the difference in rates of treatment response was higher than -10%. The primary analysis was done in the per-protocol population. The trial is registered at ClinicalTrials.gov (NCT05069974) and was stopped for futility after interim analysis. FINDINGS: Between Oct 20, 2021, and Sept 15, 2022, 62 patients were assessed for eligibility, and 59 were randomly assigned to linezolid (n=29) or BPG (n=30). In the per-protocol population, after 48 weeks' follow-up, 19 (70%) of 27 participants (95% CI 49·8 to 86·2) in the linezolid group had responded to treatment and 28 (100%) of 28 participants (87·7 to 100·0) in the BPG group (treatment difference -29·6, 95% CI -50·5 to -8·8), which did not meet the non-inferiority criterion. The number of drug-related adverse events (all mild or moderate) was similar in both treatment groups (five [17%] of 29, 95% CI 5·8 to 35·8 in the linezolid group vs five [17%] of 30, 5·6 to 34·7, in the BPG group). No serious adverse events were reported during follow-up. INTERPRETATION: The efficacy of linezolid at a daily dose of 600 mg for 5 days did not meet the non-inferiority criteria compared with BPG and, as a result, this treatment regimen should not be used to treat patients with early syphilis. FUNDING: European Research Council and Fondo de Investigaciones Sanitarias.


Subject(s)
Penicillin G Benzathine , Syphilis , Adult , Humans , Anti-Bacterial Agents , Drug Resistance, Bacterial , Linezolid/therapeutic use , Macrolides/pharmacology , Penicillin G Benzathine/therapeutic use , Prospective Studies , Reagins , Recurrence , Spain , Syphilis/drug therapy , Treatment Outcome
19.
JAMA Netw Open ; 7(1): e2352387, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38241046

ABSTRACT

Importance: COVID-19 vaccine-derived antibodies in pregnant people may protect infants from severe infection in the first 6 months of life via transplacental antibody transfer. Few data exist on maternally derived SARS-CoV-2 antibodies in preterm compared with full-term infants in association with vaccination timing. Objective: To compare SARS-CoV-2 anti-Spike (anti-S) antibody levels in preterm and full-term infants in the context of vaccine dose timing before delivery. Design, Setting, and Participants: This prospective cohort study enrolled pregnant individuals and collected paired maternal and cord blood samples at delivery at the University of Washington between February 1, 2021, and January 31, 2023. Participants who had received at least 2 doses of a messenger RNA COVID-19 vaccine before delivery and did not have a history of prior COVID-19 infection or detectable anti-SARS-CoV-2 nucleocapsid antibodies were included. Exposures: Timing of the last vaccine dose and preterm or full-term gestational age at delivery. Main Outcomes and Measures: Paired maternal and cord samples were tested for anti-S antibody, and linear regression was used to evaluate associations between preterm delivery and anti-S antibody levels. Covariates included timing of last dose, number of doses, insurance status, and immunosuppressing medications. Results: A total of 220 participants (median [IQR] age, 34 [32-37] years; 212 [96.4%] female) with 36 preterm and 184 full-term deliveries were studied. Before delivery, 121 persons received 2 vaccine doses and 99 persons received 3 or more vaccine doses. The geometric mean concentration of maternal anti-S antibodies was 674 (95% CI, 577-787) after 2 doses and 8159 (95% CI, 6636-10 032) after 3 or more doses (P < .001). The cord anti-S antibody geometric mean concentration was 1000 (95% CI, 874-1144) after 2 doses and 9992 (95% CI, 8381-11 914) after 3 or more doses (P < .001). After adjustment for vaccine timing and number of doses before delivery, no association was found between preterm delivery and cord anti-S antibody levels (ß = 0.44; 95% CI, -0.06 to 0.94). Conclusions and Relevance: In this prospective cohort study of pregnant individuals with preterm and full-term deliveries, receipt of 3 or more compared with 2 doses of COVID-19 vaccine before delivery resulted in 10-fold higher cord anti-S antibody levels. Maternal antibody concentration appeared more important than delivery gestational age in determining cord anti-S antibody levels. The number of doses and timing considerations for COVID-19 vaccine in pregnancy should include individuals at risk for preterm delivery.


Subject(s)
COVID-19 , Cone-Rod Dystrophies , Premature Birth , Infant , Pregnancy , Infant, Newborn , Female , Humans , Adult , Male , COVID-19 Vaccines , Prospective Studies , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Viral
20.
Nat Immunol ; 25(1): 166-177, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38057617

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hybrid immunity is more protective than vaccination or previous infection alone. To investigate the kinetics of spike-reactive T (TS) cells from SARS-CoV-2 infection through messenger RNA vaccination in persons with hybrid immunity, we identified the T cell receptor (TCR) sequences of thousands of index TS cells and tracked their frequency in bulk TCRß repertoires sampled longitudinally from the peripheral blood of persons who had recovered from coronavirus disease 2019 (COVID-19). Vaccinations led to large expansions in memory TS cell clonotypes, most of which were CD8+ T cells, while also eliciting diverse TS cell clonotypes not observed before vaccination. TCR sequence similarity clustering identified public CD8+ and CD4+ TCR motifs associated with spike (S) specificity. Synthesis of longitudinal bulk ex vivo single-chain TCRß repertoires and paired-chain TCRÉ‘ß sequences from droplet sequencing of TS cells provides a roadmap for the rapid assessment of T cell responses to vaccines and emerging pathogens.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , CD8-Positive T-Lymphocytes , Vaccination , RNA, Messenger/genetics , Receptors, Antigen, T-Cell, alpha-beta/genetics , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL
...