Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
JCI Insight ; 7(16)2022 08 22.
Article in English | MEDLINE | ID: mdl-35852869

ABSTRACT

Recent clinical trials have shown promising results for the next-generation Bruton's tyrosine kinase (BTK) inhibitor evobrutinib in the treatment of multiple sclerosis (MS). BTK has a central role in signaling pathways that govern the development of B cells. Whether and how BTK activity shapes B cells as key drivers of MS is currently unclear. Compared with levels of BTK protein, we found higher levels of phospho-BTK in ex vivo blood memory B cells from patients with relapsing-remitting MS and secondary progressive MS compared with controls. In these MS groups, BTK activity was induced to a lesser extent after anti-IgM stimulation. BTK positively correlated with CXCR3 expression, both of which were increased in blood B cells from clinical responders to natalizumab (anti-VLA-4 antibody) treatment. Under in vitro T follicular helper-like conditions, BTK phosphorylation was enhanced by T-bet-inducing stimuli, IFN-γ and CpG-ODN, while the expression of T-bet and T-bet-associated molecules CXCR3, CD21, and CD11c was affected by evobrutinib. Furthermore, evobrutinib interfered with in vitro class switching, as well as memory recall responses, and disturbed CXCL10-mediated migration of CXCR3+ switched B cells through human brain endothelial monolayers. These findings demonstrate a functional link between BTK activity and disease-relevant B cells and offer valuable insights into how next-generation BTK inhibitors could modulate the clinical course of patients with MS.


Subject(s)
Multiple Sclerosis , T-Box Domain Proteins , Agammaglobulinaemia Tyrosine Kinase , Humans , Multiple Sclerosis/drug therapy , Phosphorylation , Piperidines , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , T-Box Domain Proteins/metabolism
2.
ChemMedChem ; 16(24): 3653-3662, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34582626

ABSTRACT

Bruton's tyrosine kinase (BTK) is a member of the Tec kinase family that is expressed in cells of hematopoietic lineage. Evidence has shown that inhibition of BTK has clinical benefit for the treatment of a wide array of autoimmune and inflammatory diseases. Previously we reported the discovery of a novel nicotinamide selectivity pocket (SP) series of potent and selective covalent irreversible BTK inhibitors. The top molecule 1 of that series strongly inhibited CYP2C8 (IC50 =100 nM), which was attributed to the bridged linker group. However, our effort on the linker replacement turned out to be fruitless. With the study of the X-ray crystal structure of compound 1, we envisioned the opportunity of removal of this liability via transposition of the linker moiety in 1 from C6 to C5 position of the pyridine core. With this strategy, our optimization led to the discovery of a novel series, in which the top molecule 18 A displayed reduced CYP inhibitory activity and good potency. To further explore this new series, different warheads besides acrylamide, for example cyanamide, were also tested. However, this effort didn't lead to the discovery of molecules with better potency than 18 A. The loss of potency in those molecules could be related to the reduced reactivity of the warhead or reversible binding mode. Further profiling of 18 A disclosed that it had a strong hERG (human Ether-a-go-go Related Gene) inhibition, which could be related to the phenoxyphenyl group.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Cytochrome P-450 CYP2C8/metabolism , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Agammaglobulinaemia Tyrosine Kinase/metabolism , Cytochrome P-450 CYP2C8 Inhibitors/chemical synthesis , Cytochrome P-450 CYP2C8 Inhibitors/chemistry , Dose-Response Relationship, Drug , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
3.
Bioorg Med Chem ; 40: 116163, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33932711

ABSTRACT

Bruton's tyrosine kinase (BTK) is a cytoplasmic, non-receptor tyrosine kinase member of the TEC family of tyrosine kinases. Pre-clinical and clinical data have shown that targeting BTK can be used for the treatment for B-cell disorders. Here we disclose the discovery of a novel imidazo[4,5-b]pyridine series of potent, selective reversible BTK inhibitors through a rational design approach. From a starting hit molecule 1, medicinal chemistry optimization led to the development of a lead compound 30, which exhibited 58 nM BTK inhibitory potency in human whole blood and high kinome selectivity. Additionally, the compound demonstrated favorable pharmacokinetics (PK), and showed potent dose-dependent efficacy in a rat CIA model.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Drug Discovery , Imidazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Agammaglobulinaemia Tyrosine Kinase/metabolism , Dose-Response Relationship, Drug , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship
4.
Brain ; 144(5): 1396-1408, 2021 06 22.
Article in English | MEDLINE | ID: mdl-33724342

ABSTRACT

Leptomeningeal inflammation in multiple sclerosis is associated with worse clinical outcomes and greater cortical pathology. Despite progress in identifying this process in multiple sclerosis patients using post-contrast fluid-attenuated inversion recovery imaging, early trials attempting to target meningeal inflammation have been unsuccessful. There is a lack of appropriate model systems to screen potential therapeutic agents targeting meningeal inflammation. We utilized ultra-high field (11.7 T) MRI to perform post-contrast imaging in SJL/J mice with experimental autoimmune encephalomyelitis induced via immunization with proteolipid protein peptide (PLP139-151) and complete Freund's adjuvant. Imaging was performed in both a cross-sectional and longitudinal fashion at time points ranging from 2 to 14 weeks post-immunization. Following imaging, we euthanized animals and collected tissue for pathological evaluation, which revealed dense cellular infiltrates corresponding to areas of contrast enhancement involving the leptomeninges. These areas of meningeal inflammation contained B cells (B220+), T cells (CD3+) and myeloid cells (Mac2+). We also noted features consistent with tertiary lymphoid tissue within these areas, namely the presence of peripheral node addressin-positive structures, C-X-C motif chemokine ligand-13 (CXCL13)-producing cells and FDC-M1+ follicular dendritic cells. In the cortex adjacent to areas of meningeal inflammation we identified astrocytosis, microgliosis, demyelination and evidence of axonal stress/damage. Since areas of meningeal contrast enhancement persisted over several weeks in longitudinal experiments, we utilized this model to test the effects of a therapeutic intervention on established meningeal inflammation. We randomized mice with evidence of meningeal contrast enhancement on MRI scans performed at 6 weeks post-immunization, to treatment with either vehicle or evobrutinib [a Bruton tyrosine kinase (BTK) inhibitor] for a period of 4 weeks. These mice underwent serial imaging; we examined the effect of treatment on the areas of meningeal contrast enhancement and noted a significant reduction in the evobrutinib group compared to vehicle (30% reduction versus 5% increase; P = 0.003). We used ultra-high field MRI to identify areas of meningeal inflammation and to track them over time in SJL/J mice with experimental autoimmune encephalomyelitis, and then used this model to identify BTK inhibition as a novel therapeutic approach to target meningeal inflammation. The results of this study provide support for future studies in multiple sclerosis patients with imaging evidence of meningeal inflammation.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Brain/pathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Meninges/pathology , Piperidines/pharmacology , Pyrimidines/pharmacology , Animals , Brain/drug effects , Brain/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Female , Inflammation/immunology , Inflammation/pathology , Meninges/immunology , Mice
5.
Brain Plast ; 5(2): 123-133, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33282676

ABSTRACT

BACKGROUND: Microglia are the resident macrophages of the central nervous system (CNS). In multiple sclerosis (MS) and related experimental models, microglia have either a pro-inflammatory or a pro-regenerative/pro-remyelinating function. Inhibition of Bruton's tyrosine kinase (BTK), a member of the Tec family of kinases, has been shown to block differentiation of pro-inflammatory macrophages in response to granulocyte-macrophage colony-stimulating factor in vitro. However, the role of BTK in the CNS is unknown. METHODS: Our aim was to investigate the effect of BTK inhibition on myelin repair in ex vivo and in vivo experimental models of demyelination and remyelination. The remyelination effect of a BTK inhibitor (BTKi; BTKi-1) was then investigated in LPC-induced demyelinated cerebellar organotypic slice cultures and metronidazole-induced demyelinated Xenopus MBP-GFP-NTR transgenic tadpoles. RESULTS: Cellular detection of BTK and its activated form BTK-phospho-Y223 (p-BTK) was determined by immunohistochemistry in organotypic cerebellar slice cultures, before and after lysophosphatidylcholine (LPC)-induced demyelination. A low BTK signal detected by immunolabeling under normal conditions in cerebellar slices was in sharp contrast to an 8.5-fold increase in the number of BTK-positive cells observed in LPC-demyelinated slice cultures. Under both conditions, approximately 75% of cells expressing BTK and p-BTK were microglia and 25% were astrocytes. Compared with spontaneous recovery, treatment of demyelinated slice cultures and MTZ-demyelinated transgenic tadpoles with BTKi resulted in at least a 1.7-fold improvement of remyelination. CONCLUSION: Our data demonstrate that BTK inhibition is a promising therapeutic strategy for myelin repair.

6.
Acta Neuropathol ; 140(4): 535-548, 2020 10.
Article in English | MEDLINE | ID: mdl-32761407

ABSTRACT

Anti-CD20-mediated B-cell depletion effectively reduces acute multiple sclerosis (MS) flares. Recent data shows that antibody-mediated extinction of B cells as a lasting immune suppression, harbors the risk of developing humoral deficiencies over time. Accordingly, more selective, durable and reversible B-cell-directed MS therapies are needed. We here tested inhibition of Bruton's tyrosine kinase (BTK), an enzyme centrally involved in B-cell receptor signaling, as the most promising approach in this direction. Using mouse models of MS, we determined that evobrutinib, the first BTK inhibiting molecule being developed, dose-dependently inhibited antigen-triggered activation and maturation of B cells as well as their release of pro-inflammatory cytokines. Most importantly, evobrutinib treatment functionally impaired the capacity of B cells to act as antigen-presenting cells for the development of encephalitogenic T cells, resulting in a significantly reduced disease severity in mice. In contrast to anti-CD20, BTK inhibition silenced this key property of B cells in MS without impairing their frequency or functional integrity. In conjunction with a recent phase II trial reporting that evobrutinib is safe and effective in MS, our mechanistic data highlight therapeutic BTK inhibition as a landmark towards selectively interfering with MS-driving B-cell properties.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , B-Lymphocytes/drug effects , Encephalomyelitis, Autoimmune, Experimental/immunology , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Animals , Cell Differentiation/drug effects , Cell Differentiation/immunology , Encephalomyelitis, Autoimmune, Experimental/enzymology , Encephalomyelitis, Autoimmune, Experimental/pathology , Humans , Lymphocyte Activation/drug effects , Mice , Mice, Inbred C57BL , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
7.
Clin Transl Sci ; 13(2): 325-336, 2020 03.
Article in English | MEDLINE | ID: mdl-31654487

ABSTRACT

Bruton's tyrosine kinase (BTK) is a key regulator of B cell receptor and Fc receptor signaling, and a rational therapeutic target for autoimmune diseases. This first-in-human phase I, double-blind, placebo-controlled trial investigated the safety, tolerability, pharmacokinetics (PK), target occupancy, and effects on QT interval of evobrutinib, a highly selective, oral inhibitor of BTK, in healthy subjects. This dose escalation trial consisted of two parts. Part 1 included 48 subjects in 6 ascending dose cohorts (25, 50, 100, 200, 350, and 500 mg) randomized to a single dose of evobrutinib or placebo. Part 2 included 36 subjects in 3 ascending dose cohorts (25, 75, and 200 mg/day) randomized to evobrutinib or placebo once daily for 14 days. Safety and tolerability, as well as PK and target occupancy (total and free BTK in peripheral blood mononuclear cells), were assessed following single and multiple dosing. PK parameters were determined by noncompartmental methods. QT interval was obtained from 12-lead electrocardiogram recordings and corrected for heart rate by Fridericia's method (QTcF). Treatment-emergent adverse events (TEAEs) were mostly mild, occurring in 25% of subjects after single dosing, and 48.1% after multiple dosing. There was no apparent dose relationship regarding frequency or type of TEAE among evobrutinib-treated subjects. Absorption was rapid (time to reach maximum plasma concentration (Tmax ) ~ 0.5 hour), half-life short (~ 2 hours), and PK dose-proportional, with no accumulation or time dependency on repeat dosing. BTK occupancy was dose-dependent, reaching maximum occupancy of > 90% within ~ 4 hours after single doses ≥ 200 mg; the effect was long-lasting (> 50% occupancy at 96 hours with ≥ 100 mg). After multiple dosing, full BTK occupancy was achieved with 25 mg, indicating slow turnover of BTK protein in vivo. Concentration-QTcF analyses did not show any impact of evobrutinib concentration on corrected QT (QTc). In summary, evobrutinib was well-tolerated, showed linear and time-independent PK, induced long-lasting BTK inhibition, and was associated with no prolongation of QT/QTc interval in healthy subjects. Evobrutinib is, therefore, suitable for investigation in autoimmune diseases.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Long QT Syndrome/diagnosis , Piperidines/adverse effects , Pyrimidines/adverse effects , Administration, Oral , Adolescent , Adult , Dose-Response Relationship, Drug , Double-Blind Method , Electrocardiography , Female , Half-Life , Healthy Volunteers , Heart Rate/drug effects , Humans , Long QT Syndrome/chemically induced , Male , Middle Aged , Piperidines/administration & dosage , Piperidines/pharmacokinetics , Pyrimidines/administration & dosage , Pyrimidines/pharmacokinetics , Young Adult
8.
J Med Chem ; 62(17): 7643-7655, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31368705

ABSTRACT

Bruton's tyrosine kinase (BTK) inhibitors such as ibrutinib hold a prominent role in the treatment of B cell malignancies. However, further refinement is needed to this class of agents, particularly in terms of adverse events (potentially driven by kinase promiscuity), which preclude their evaluation in nononcology indications. Here, we report the discovery and preclinical characterization of evobrutinib, a potent, obligate covalent inhibitor with high kinase selectivity. Evobrutinib displayed sufficient preclinical pharmacokinetic and pharmacodynamic characteristics which allowed for in vivo evaluation in efficacy models. Moreover, the high selectivity of evobrutinib for BTK over epidermal growth factor receptor and other Tec family kinases suggested a low potential for off-target related adverse effects. Clinical investigation of evobrutinib is ongoing in several autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Drug Discovery , Immune System Diseases/drug therapy , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Administration, Oral , Agammaglobulinaemia Tyrosine Kinase/metabolism , Dose-Response Relationship, Drug , Humans , Immune System Diseases/metabolism , Molecular Structure , Piperidines/administration & dosage , Piperidines/chemistry , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Pyrimidines/administration & dosage , Pyrimidines/chemistry , Structure-Activity Relationship
9.
J Immunol ; 202(10): 2888-2906, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30988116

ABSTRACT

Because of its role in mediating both B cell and Fc receptor signaling, Bruton's tyrosine kinase (BTK) is a promising target for the treatment of autoimmune diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Evobrutinib is a novel, highly selective, irreversible BTK inhibitor that potently inhibits BCR- and Fc receptor-mediated signaling and, thus, subsequent activation and function of human B cells and innate immune cells such as monocytes and basophils. We evaluated evobrutinib in preclinical models of RA and SLE and characterized the relationship between BTK occupancy and inhibition of disease activity. In mouse models of RA and SLE, orally administered evobrutinib displayed robust efficacy, as demonstrated by reduction of disease severity and histological damage. In the SLE model, evobrutinib inhibited B cell activation, reduced autoantibody production and plasma cell numbers, and normalized B and T cell subsets. In the RA model, efficacy was achieved despite failure to reduce autoantibodies. Pharmacokinetic/pharmacodynamic modeling showed that mean BTK occupancy in blood cells of 80% was linked to near-complete disease inhibition in both RA and SLE mouse models. In addition, evobrutinib inhibited mast cell activation in a passive cutaneous anaphylaxis model. Thus, evobrutinib achieves efficacy by acting both on B cells and innate immune cells. Taken together, our data show that evobrutinib is a promising molecule for the chronic treatment of B cell-driven autoimmune disorders.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Arthritis, Rheumatoid/drug therapy , B-Lymphocytes/immunology , Lupus Erythematosus, Systemic/drug therapy , Lymphocyte Activation/drug effects , Piperidines/pharmacology , Pyrimidines/pharmacology , Agammaglobulinaemia Tyrosine Kinase/immunology , Animals , Arthritis, Rheumatoid/enzymology , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , B-Lymphocytes/enzymology , B-Lymphocytes/pathology , Disease Models, Animal , Female , Humans , Lupus Erythematosus, Systemic/enzymology , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Mice , U937 Cells
10.
J Am Acad Dermatol ; 81(1): 196-203, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30926369

ABSTRACT

BACKGROUND: Interleukin 17 is involved in the pathogenesis of psoriasis, a chronic debilitating disease. OBJECTIVES: To evaluate the safety/tolerability, immunogenicity, pharmacokinetics/pharmacodynamics, and efficacy of M1095, an anti-interleukin 17A/F nanobody, in moderate-to-severe plaque psoriasis. METHODS: This multicenter, double-blind, placebo-controlled dose escalation phase 1 study randomized 44 patients 4:1 to treatment with subcutaneous M1095 (30, 60, 120, or 240 mg) or placebo biweekly for 6 weeks, in 4 ascending dose cohorts. RESULTS: The most frequent treatment-emergent adverse events with M1095 were pruritus (n = 4) and headache (n = 3); 2 patients withdrew owing to adverse events (injection site reaction and elevated liver enzyme levels). The terminal half-life of M1095 was 11 to 12 days. The area under the curve/maximum concentration was dose proportional. Of 10 M1095-treated patients positive for antidrug antibodies, 5 showed treatment-emergent antidrug antibody responses. There was no effect on M1095 exposure. Marked decreases in psoriasis inflammatory markers were observed with M1095. By day 85, 100% and 56% of patients receiving M1095, 240 mg, achieved psoriasis area and severity index 90 and 100, respectively. Improvements in static Physician's Global Assessment and affected body surface area were also seen. LIMITATIONS: Interpretation of efficacy data is limited by the small sample size. CONCLUSION: Multiple subcutaneous doses of M1095 showed a favorable safety profile with dose-dependent improvements in psoriasis.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Interleukin-17/antagonists & inhibitors , Psoriasis/diagnosis , Psoriasis/drug therapy , Adult , Dose-Response Relationship, Drug , Double-Blind Method , Drug Administration Schedule , Female , Follow-Up Studies , Humans , Injections, Subcutaneous , Male , Maximum Tolerated Dose , Middle Aged , Patient Safety , Reference Values , Risk Assessment , Severity of Illness Index , Treatment Outcome , Young Adult
11.
ChemMedChem ; 14(2): 217-223, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30521698

ABSTRACT

Bruton's tyrosine kinase (Btk) is an attractive target for the treatment of a wide array of B-cell malignancies and autoimmune diseases. Small-molecule covalent irreversible Btk inhibitors targeting Cys481 have been developed for the treatment of such diseases. In clinical trials, probe molecules are required in occupancy studies to measure the level of engagement of the protein by these covalent irreversible inhibitors. The result of this pharmacodynamic (PD) activity provides guidance for appropriate dosage selection to optimize inhibition of the drug target and correlation of target inhibition with disease treatment efficacy. This information is crucial for successful evaluation of drug candidates in clinical trials. Based on the pyridine carboxamide scaffold of a novel solvent-accessible pocket (SAP) series of covalent irreversible Btk inhibitors, we successfully developed a potent and selective affinity-based biotinylated probe 12 (2-[(4-{4-[5-(1-{5-[(3aS,4S,6aR)-2-oxo-hexahydro-1H-thieno[3,4-d]imidazol-4-yl]pentanamido}-3,6,9,12-tetraoxapentadecan-15-amido)pentanoyl]piperazine-1-carbonyl}phenyl)amino]-6-[1-(prop-2-enoyl)piperidin-4-yl]pyridine-3-carboxamide). Compound 12 has been used in Btk occupancy assays for preclinical studies to determine the therapeutic efficacy of Btk inhibition in two mouse lupus models driven by TLR7 activation and type I interferon.


Subject(s)
Biological Assay/methods , Piperazines/chemistry , Protein Kinase Inhibitors/analysis , Pyridines/chemistry , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Animals , Biotin/chemistry , Mice , Models, Animal , Molecular Structure , Piperazines/chemical synthesis , Protein Kinase Inhibitors/metabolism , Pyridines/chemical synthesis , Structure-Activity Relationship
12.
Bioorg Med Chem Lett ; 28(21): 3419-3424, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30290988

ABSTRACT

Btk is an attractive target for the treatment of a range of Bcell malignancies as well as several autoimmune diseases such as murine lupus and rheumatoid arthritis. Several covalent irreversible inhibitors of Btk are currently in development including ibrutinib which was approved for treatment of B-cell malignancies. Herein, we describe our efforts using X-ray guided structure based design (SBD) to identify a novel chemical series of covalent Btk inhibitors. The resulting pyridine carboxamides were potent and selective inhibitors of Btk having excellent enzymatic and cellular inhibitory activity.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology , Adenine/analogs & derivatives , Administration, Oral , Animals , Caco-2 Cells , Humans , Mice , Molecular Structure , Piperidines , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/pharmacology , Pyridines/administration & dosage , Pyridines/chemical synthesis , Pyridines/chemistry , Pyrimidines/administration & dosage , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 28(20): 3307-3311, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30243592

ABSTRACT

Bruton's tyrosine kinase (Btk) is a member of the Tec kinase family that is expressed in cells of hematopoietic lineage (e.g. B cells, macrophages, monocytes, and mast cells). Small molecule covalent irreversible Btk inhibitors targeting Cys481 within the ATP-binding pocket have been applied in the treatment of B-cell malignancies. Starting from a fragment, we discovered a novel series of potent covalent irreversible Btk inhibitors that bear N-linked groups occupying the solvent accessible pocket (SAP) of the active site of the Btk kinase domain. The hit molecules, however, displayed high P-gp mediated efflux ratio (ER) and poor A-B permeability in Caco-2 assay. By decreasing tPSA, installing steric hindrance and adjusting clogP, one top molecule 9 was discovered, which showed a 99% decrease in efflux ratio and a 90-fold increase in A-B permeability compared to hit molecule 1.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Niacinamide/pharmacology , Protein Kinase Inhibitors/pharmacology , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase/chemistry , Animals , Caco-2 Cells , Catalytic Domain , Humans , Mice , Molecular Structure , Niacinamide/analogs & derivatives , Niacinamide/chemical synthesis , Niacinamide/pharmacokinetics , Permeability , Piperidines , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Pyrazoles/pharmacology , Pyrimidines/pharmacology
14.
Bioorg Med Chem Lett ; 28(17): 2939-2944, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30122225

ABSTRACT

Bruton's Tyrosine Kinase (BTK) is a member of the TEC kinase family that is expressed in cells of hematopoietic lineage (e.g., in B cells, macrophages, monocytes, and mast cells). Small molecule covalent irreversible BTK inhibitor targeting Cys481 within the ATP-binding pocket, for example ibrutinib, has been applied in the treatment of B-cell malignancies. Starting from a fragment hit, we discovered a novel series of potent covalent irreversible BTK inhibitors that occupy selectivity pocket of the active site of the BTK kinase domain. Guided by X-ray structures and a fragment-based drug design (FBDD) approach, we generated molecules showing comparable cellular potency to ibrutinib and higher kinome selectivity against undesirable off-targets like EGFR.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Agammaglobulinaemia Tyrosine Kinase/metabolism , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
15.
Mol Pharmacol ; 91(3): 208-219, 2017 03.
Article in English | MEDLINE | ID: mdl-28062735

ABSTRACT

Bruton's tyrosine kinase (Btk) is expressed in a variety of hematopoietic cells. Btk has been demonstrated to regulate signaling downstream of the B-cell receptor (BCR), Fc receptors (FcRs), and toll-like receptors. It has become an attractive drug target because its inhibition may provide significant efficacy by simultaneously blocking multiple disease mechanisms. Consequently, a large number of Btk inhibitors have been developed. These compounds have diverse binding modes, and both reversible and irreversible inhibitors have been developed. Reported herein, we have tested nine Btk inhibitors and characterized on a molecular level how their interactions with Btk define their ability to block different signaling pathways. By solving the crystal structures of Btk inhibitors bound to the enzyme, we discovered that the compounds can be classified by their ability to trigger sequestration of Btk residue Y551. In cells, we found that sequestration of Y551 renders it inaccessible for phosphorylation. The ability to sequester Y551 was an important determinant of potency against FcεR signaling as Y551 sequestering compounds were more potent for inhibiting basophils and mast cells. This result was true for the inhibition of FcγR signaling as well. In contrast, Y551 sequestration was less a factor in determining potency against BCR signaling. We also found that Btk activity is regulated differentially in basophils and B cells. These results elucidate important determinants for Btk inhibitor potency against different signaling pathways and provide insight for designing new compounds with a broader inhibitory profile that will likely result in greater efficacy.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Receptors, Antigen, B-Cell/metabolism , Receptors, Fc/metabolism , Signal Transduction/drug effects , Tyrosine/metabolism , Agammaglobulinaemia Tyrosine Kinase , Cell Line, Tumor , Cluster Analysis , Crystallography, X-Ray , Enzyme Activation/drug effects , Humans , Models, Molecular , Mutant Proteins/metabolism , Phosphorylation/drug effects , Protein Kinase Inhibitors/chemistry , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism
16.
Clin Immunol ; 164: 65-77, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26821304

ABSTRACT

Bruton's tyrosine kinase (Btk) is expressed in a variety of immune cells and previous work has demonstrated that blocking Btk is a promising strategy for treating autoimmune diseases. Herein, we utilized a tool Btk inhibitor, M7583, to determine the therapeutic efficacy of Btk inhibition in two mouse lupus models driven by TLR7 activation and type I interferon. In BXSB-Yaa lupus mice, Btk inhibition reduced autoantibodies, nephritis, and mortality. In the pristane-induced DBA/1 lupus model, Btk inhibition suppressed arthritis, but autoantibodies and the IFN gene signature were not significantly affected; suggesting efficacy was mediated through inhibition of Fc receptors. In vitro studies using primary human macrophages revealed that Btk inhibition can block activation by immune complexes and TLR7 which contributes to tissue damage in SLE. Overall, our results provide translational insight into how Btk inhibition may provide benefit to a variety of SLE patients by affecting both BCR and FcR signaling.


Subject(s)
Lupus Erythematosus, Systemic/drug therapy , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase , Animals , Arthritis/drug therapy , Arthritis/pathology , Autoantibodies/blood , Disease Models, Animal , Female , Foot Joints/drug effects , Foot Joints/pathology , Humans , Immunosuppressive Agents , Interferon Type I/immunology , Kidney/drug effects , Kidney/pathology , Lupus Erythematosus, Systemic/chemically induced , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Macrophages/drug effects , Macrophages/immunology , Male , Mice, Inbred C57BL , Mice, Inbred DBA , Nephritis/drug therapy , Nephritis/pathology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Proteinuria/drug therapy , Proteinuria/pathology , Terpenes , Toll-Like Receptor 7/immunology
17.
Front Immunol ; 5: 233, 2014.
Article in English | MEDLINE | ID: mdl-24904582

ABSTRACT

SLE is a complex autoimmune inflammatory disease characterized by pathogenic autoantibody production as a consequence of uncontrolled T-B cell activity and immune-complex deposition in various organs, including kidney, leading to tissue damage and function loss. There is a high unmet need for better treatment options other than corticosteroids and immunosuppressants. Phosphoinositol-3 kinase δ (PI3Kδ) is a promising target in this respect as it is essential in mediating B- and T-cell function in mouse and human. We report the identification of selective PI3Kδ inhibitors that blocked B-, T-, and plasmacytoid dendritic cell activities in human peripheral blood and in primary cell co-cultures (BioMAP(®)) without detecting signs of undesired toxicity. In an IFNα-accelerated mouse SLE model, our PI3Kδ inhibitors blocked nephritis development, whether administered at the onset of autoantibody appearance or the onset of proteinuria. Disease amelioration correlated with normalized immune cell numbers in the spleen, reduced immune-complex deposition as well as reduced inflammation, fibrosis, and tissue damage in the kidney. Improvements were similar to those achieved with a frequently prescribed drug for lupus nephritis, the potent immunosuppressant mycophenolate mofetil. Finally, we established a pharmacodynamics/pharmacokinetic/efficacy model that revealed that a sustained PI3Kδ inhibition of 50% is sufficient to achieve full efficacy in our disease model. These data demonstrate the therapeutic potential of PI3Kδ inhibitors in SLE and lupus nephritis.

18.
Proc Natl Acad Sci U S A ; 110(39): 15776-81, 2013 Sep 24.
Article in English | MEDLINE | ID: mdl-24019486

ABSTRACT

E26 transformation-specific sequence 1 (Ets-1), the prototype of the ETS family of transcription factors, is critical for the expression of IL-2 by murine Th cells; however, its mechanism of action is still unclear. Here we show that Ets-1 is also essential for optimal production of IL-2 by primary human Th cells. Although Ets-1 negatively regulates the expression of Blimp1, a known suppressor of IL-2 expression, ablation of B lymphocyte-induced maturation protein 1 (Blimp1) does not rescue the expression of IL-2 by Ets-1-deficient Th cells. Instead, Ets-1 physically and functionally interacts with the nuclear factor of activated T-cells (NFAT) and is required for the recruitment of NFAT to the IL-2 promoter. In addition, Ets-1 is located in both the nucleus and cytoplasm of resting Th cells. Nuclear Ets-1 quickly exits the nucleus in response to calcium-dependent signals and competes with NFAT proteins for binding to protein components of noncoding RNA repressor of NFAT complex (NRON), which serves as a cytoplasmic trap for phosphorylated NFAT proteins. This nuclear exit of Ets-1 precedes rapid nuclear entry of NFAT and Ets-1 deficiency results in impaired nuclear entry, but not dephosphorylation, of NFAT proteins. Thus, Ets-1 promotes the expression of IL-2 by modulating the activity of NFAT.


Subject(s)
Cell Nucleus/metabolism , Interleukin-2/genetics , NFATC Transcription Factors/metabolism , Promoter Regions, Genetic , Proto-Oncogene Protein c-ets-1/metabolism , Animals , Base Sequence , Calcium/metabolism , Gene Knockout Techniques , Humans , Interleukin-2/biosynthesis , Mice , Molecular Sequence Data , Multiprotein Complexes/metabolism , Positive Regulatory Domain I-Binding Factor 1 , Protein Binding/genetics , Protein Transport , Proto-Oncogene Protein c-ets-1/deficiency , Signal Transduction , Th1 Cells/metabolism , Transcription Factors/deficiency , Transcription Factors/metabolism
19.
J Immunol ; 188(5): 2244-53, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22266280

ABSTRACT

IL-10 is a multifunctional cytokine that plays a crucial role in immunity and tolerance. IL-10 is produced by diverse immune cell types, including B cells and subsets of T cells. Although Th1 produce IL-10, their expression levels are much lower than Th2 cells under conventional stimulation conditions. The potential role of E26 transformation-specific 1 (Ets-1) transcription factor as a negative regulator for Il10 gene expression in CD4(+) T cells has been implicated previously. In this study, we investigated the underlying mechanism of Ets-1-mediated Il10 gene repression in Th1 cells. Compared with wild type Th1 cells, Ets-1 knockout Th1 cells expressed a significantly higher level of IL-10, which is comparable with that of wild type Th2 cells. Upregulation of IL-10 expression in Ets-1 knockout Th1 cells was accompanied by enhanced chromatin accessibility and increased recruitment of histone H3 acetylation at the Il10 regulatory regions. Reciprocally, Ets-1 deficiency significantly decreased histone deacetylase 1 (HDAC1) enrichment at the Il10 regulatory regions. Treatment with trichostatin A, an inhibitor of HDAC family, significantly increased Il10 gene expression by increasing histone H3 acetylation recruitment. We further demonstrated a physical interaction between Ets-1 and HDAC1. Coexpression of Ets-1 with HDAC1 synergistically repressed IL-10 transcription activity. In summary, our data suggest that an interaction of Ets-1 with HDAC1 represses the Il10 gene expression in Th1 cells.


Subject(s)
Down-Regulation/immunology , Gene Expression Regulation/immunology , Histone Deacetylase 1/physiology , Interleukin-10/antagonists & inhibitors , Interleukin-10/biosynthesis , Proto-Oncogene Protein c-ets-1/physiology , Th1 Cells/immunology , Th1 Cells/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Cells, Cultured , Down-Regulation/genetics , HEK293 Cells , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase 1/metabolism , Humans , Interleukin-10/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Protein c-ets-1/deficiency , Proto-Oncogene Protein c-ets-1/metabolism , Th1 Cells/cytology , Up-Regulation/genetics , Up-Regulation/immunology
20.
J Immunol ; 186(2): 969-76, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21148801

ABSTRACT

The expression of CD127, the IL-7-binding subunit of the IL-7 R, is tightly regulated during the development and activation of T cells and is reduced during chronic viral infection. However, the molecular mechanism regulating the dynamic expression of CD127 is still poorly understood. In this study, we report that the transcription factor Ets-1 is required for maintaining the expression of CD127 in murine peripheral T cells. Ets-1 binds to and activates the CD127 promoter, and its absence leads to reduced CD127 expression, attenuated IL-7 signaling, and impaired IL-7-dependent homeostatic proliferation of T cells. The expression of CD127 and Ets-1 is strongly correlated in human T cells. Both CD127 and Ets-1 expression are decreased in CD8(+) T cells during HIV infection. In addition, HIV-associated loss of CD127 is only observed in Ets-1(low) effector memory and central memory but not in Ets-1(high) naive CD8(+) T cells. Taken together, our data identify Ets-1 as a critical regulator of CD127 expression in T cells.


Subject(s)
Interleukin-7/biosynthesis , Proto-Oncogene Protein c-ets-1/physiology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Animals , Cells, Cultured , Female , HIV-1/immunology , Humans , Interleukin-7/genetics , Interleukin-7 Receptor alpha Subunit/biosynthesis , Interleukin-7 Receptor alpha Subunit/genetics , Interleukin-7 Receptor alpha Subunit/metabolism , Male , Mice , Mice, Knockout , Promoter Regions, Genetic/immunology , Protein Binding/immunology , Proto-Oncogene Protein c-ets-1/deficiency , Proto-Oncogene Protein c-ets-1/genetics , Proto-Oncogene Protein c-ets-1/metabolism , T-Lymphocyte Subsets/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...