Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Channels (Austin) ; 16(1): 230-243, 2022 12.
Article in English | MEDLINE | ID: mdl-36239534

ABSTRACT

As part of a drug discovery effort to identify potent inhibitors of NaV1.7 for the treatment of pain, we observed that inhibitors produced unexpected cardiovascular and respiratory effects in vivo. Specifically, inhibitors administered to rodents produced changes in cardiovascular parameters and respiratory cessation. We sought to determine the mechanism of the in vivo adverse effects by studying the selectivity of the compounds on NaV1.5, NaV1.4, and NaV1.6 in in vitro and ex vivo assays. Inhibitors lacking sufficient NaV1.7 selectivity over NaV1.6 were associated with respiratory cessation after in vivo administration to rodents. Effects on respiratory rate in rats were consistent with effects in an ex vivo hemisected rat diaphragm model and in vitro NaV1.6 potency. Furthermore, direct blockade of the phrenic nerve signaling was observed at exposures known to cause respiratory cessation in rats. Collectively, these results support a significant role for NaV1.6 in phrenic nerve signaling and respiratory function.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel , Respiratory Insufficiency , Animals , Pain , Phrenic Nerve , Rats , Respiratory Insufficiency/drug therapy
2.
J Med Chem ; 65(15): 10318-10340, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35878399

ABSTRACT

Activation of PKG1α is a compelling strategy for the treatment of cardiovascular diseases. As the main effector of cyclic guanosine monophosphate (cGMP), activation of PKG1α induces smooth muscle relaxation in blood vessels, lowers pulmonary blood pressure, prevents platelet aggregation, and protects against cardiac stress. The development of activators has been mostly limited to cGMP mimetics and synthetic peptides. Described herein is the optimization of a piperidine series of small molecules to yield activators that demonstrate in vitro phosphorylation of vasodilator-stimulated phosphoprotein as well as antiproliferative effects in human pulmonary arterial smooth muscle cells. Hydrogen/deuterium exchange mass spectrometry experiments with the small molecule activators revealed a mechanism of action consistent with cGMP-induced activation, and an X-ray co-crystal structure with a construct encompassing the regulatory domains illustrated a binding mode in an allosteric pocket proximal to the low-affinity cyclic nucleotide-binding domain.


Subject(s)
Cyclic GMP-Dependent Protein Kinase Type I , Cyclic GMP , Cyclic GMP/metabolism , Cyclic GMP-Dependent Protein Kinase Type I/genetics , Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Humans , Myocytes, Smooth Muscle , Phosphorylation , Protein Processing, Post-Translational
3.
Anal Chem ; 94(23): 8309-8316, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35657338

ABSTRACT

The pharmaceutical industry is increasingly faced with challenging separations of complex crude reaction mixtures at the microscale that require the adoption of new platforms for rapid target isolation, impurity determination, and quantitation. In this study, we describe an online microscale one- or two-dimensional liquid chromatography (1D/2D-LC) system with heart-cutting and multi (triple) detector triggering in either dimension to address this need. The advantages of charged aerosol detection (CAD) are discussed for the direct quantitation of limited quantity samples, without utilizing a second analytical instrument or gradient compensation pump. In addition to the significant time and cost savings, there is no minimum recovery requirement that exists when compared to gravimetric methods for accurate microscale quantitation. This platform has been successfully used to purify 0.5-5.0 mg scale reactions in 96- or 384-well reaction plates with a gradient time of 4 min per sample. Separations performed in both dimensions are complete in less than 12 min, including trapping and column equilibration time. The isolated arrays of small-quantity investigational compounds at a high purity enable rapid exploration of chemical reaction parameters and synthetic route scouting for biological target validation.


Subject(s)
Chromatography, High Pressure Liquid , Aerosols/chemistry , Chromatography, High Pressure Liquid/methods
4.
J Chromatogr A ; 1665: 462829, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35081460

ABSTRACT

Improving efficiency while maintaining high quality separations is a central theme for specialized analytical/purification groups supporting discovery chemistry programs. Supercritical fluid chromatography (SFC) has become the prevalent technique for chiral separation and a complementary technique to reverse phase high-pressure liquid chromatography (RP-HPLC). In this manuscript we demonstrate the successful micro-isolation of chiral racemates, small molecules, and peptides using a sub-minute method on an analytical SFC system. The addition of a custom gas liquid separator (GLS) and alterations to the fluidic pathways allow the fractionation of desired products on a micro-scale SFC platform, providing analytical method development, purifications, and purity confirmation on a single SFC system. This enables micro-purification of pharmaceuticals including chiral racemates at high speed and reduced cost of materials. The resulting small-quantity, high-purity products enable follow-up enantioselective isolations from racemic products of parallel synthesis libraries. The processes established here will be beneficial for the isolations of other desired products in complex crude mixtures.


Subject(s)
Chromatography, Supercritical Fluid , Pharmaceutical Preparations , Chromatography, High Pressure Liquid , Peptides , Stereoisomerism
5.
ACS Med Chem Lett ; 12(6): 1038-1049, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34141090

ABSTRACT

The voltage-gated sodium channel Nav1.7 continues to be a high-profile target for the treatment of various pain afflictions due to its strong human genetic validation. While isoform selective molecules have been discovered and advanced into the clinic, to date, this target has yet to bear fruit in the form of marketed therapeutics for the treatment of pain. Lead optimization efforts over the past decade have focused on selectivity over Nav1.5 due to its link to cardiac side effects as well as the translation of preclinical efficacy to man. Inhibition of Nav1.6 was recently reported to yield potential respiratory side effects preclinically, and this finding necessitated a modified target selectivity profile. Herein, we report the continued optimization of a novel series of arylsulfonamide Nav1.7 inhibitors to afford improved selectivity over Nav1.6 while maintaining rodent oral bioavailability through the use of a novel multiparameter optimization (MPO) paradigm. We also report in vitro-in vivo correlations from Nav1.7 electrophysiology protocols to preclinical models of efficacy to assist in projecting clinical doses. These efforts produced inhibitors such as compound 19 with potency against Nav1.7, selectivity over Nav1.5 and Nav1.6, and efficacy in behavioral models of pain in rodents as well as inhibition of rhesus olfactory response indicative of target modulation.

6.
Sci Transl Med ; 13(594)2021 05 19.
Article in English | MEDLINE | ID: mdl-34011626

ABSTRACT

Humans with loss-of-function mutations in the Nav1.7 channel gene (SCN9A) show profound insensitivity to pain, whereas those with gain-of-function mutations can have inherited pain syndromes. Therefore, inhibition of the Nav1.7 channel with a small molecule has been considered a promising approach for the treatment of various human pain conditions. To date, clinical studies conducted using selective Nav1.7 inhibitors have not provided analgesic efficacy sufficient to warrant further investment. Clinical studies to date used multiples of in vitro IC50 values derived from electrophysiological studies to calculate anticipated human doses. To increase the chance of clinical success, we developed rhesus macaque models of action potential propagation, nociception, and olfaction, to measure Nav1.7 target modulation in vivo. The potent and selective Nav1.7 inhibitors SSCI-1 and SSCI-2 dose-dependently blocked C-fiber nociceptor conduction in microneurography studies and inhibited withdrawal responses to noxious heat in rhesus monkeys. Pharmacological Nav1.7 inhibition also reduced odor-induced activation of the olfactory bulb (OB), measured by functional magnetic resonance imaging (fMRI) studies consistent with the anosmia reported in Nav1.7 loss-of-function patients. These data demonstrate that it is possible to measure Nav1.7 target modulation in rhesus macaques and determine the plasma concentration required to produce a predetermined level of inhibition. The calculated plasma concentration for preclinical efficacy could be used to guide human efficacious exposure estimates. Given the translatable nature of the assays used, it is anticipated that they can be also used in phase 1 clinical studies to measure target modulation and aid in the interpretation of phase 1 clinical data.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel , Pain , Animals , Humans , Macaca mulatta , Nociception , Nociceptors
7.
Sci Rep ; 11(1): 2118, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483531

ABSTRACT

Lung fibrosis, or the scarring of the lung, is a devastating disease with huge unmet medical need. There are limited treatment options and its prognosis is worse than most types of cancer. We previously discovered that MK-0429 is an equipotent pan-inhibitor of αv integrins that reduces proteinuria and kidney fibrosis in a preclinical model. In the present study, we further demonstrated that MK-0429 significantly inhibits fibrosis progression in a bleomycin-induced lung injury model. In search of newer integrin inhibitors for fibrosis, we characterized monoclonal antibodies discovered using Adimab's yeast display platform. We identified several potent neutralizing integrin antibodies with unique human and mouse cross-reactivity. Among these, Ab-31 blocked the binding of multiple αv integrins to their ligands with IC50s comparable to those of MK-0429. Furthermore, both MK-0429 and Ab-31 suppressed integrin-mediated cell adhesion and latent TGFß activation. In IPF patient lung fibroblasts, TGFß treatment induced profound αSMA expression in phenotypic imaging assays and Ab-31 demonstrated potent in vitro activity at inhibiting αSMA expression, suggesting that the integrin antibody is able to modulate TGFß action though mechanisms beyond the inhibition of latent TGFß activation. Together, our results highlight the potential to develop newer integrin therapeutics for the treatment of fibrotic lung diseases.


Subject(s)
Antibodies/metabolism , Fibroblasts/metabolism , Integrin alphaV/metabolism , Pulmonary Fibrosis/metabolism , Animals , Antibodies/immunology , Bleomycin , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Fibroblasts/cytology , Humans , Integrin alphaV/immunology , Male , Mice, Inbred C57BL , Naphthyridines/pharmacology , Propionates/pharmacology , Protein Binding , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/prevention & control
8.
J Pharm Biomed Anal ; 176: 112794, 2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31437749

ABSTRACT

The drive for faster separations while maintaining quality and yield remains an important consideration for enhanced productivity as well as cost reduction for drug discovery laboratories in the pharmaceutical industry. High-throughput experimentation (HTE) and high-throughput screening (HTS) techniques can benefit from rapid and efficient isolation of product at high purity and recovery from microgram-scale crude reaction mixtures. In this study we describe the isolation of small molecule and biomolecule crude mixtures at the microgram-scale (100-2500 µg) in single or library format with methods as fast as 1.0 min and system pressures averaging 10,000 psi with an ultra-high pressure liquid chromatography (UHPLC) setup. UHPLC technology provides several advantages for rapid (<1.0 min) separations with small-particle (1.8-3.5 µm) size 4.6 × 50 mm C18 columns such as minimal extra column and delay volume, fast detector response time, and higher linear velocities for improved speed and resolution. We typically see a 5-10 fold improvement in purification time and overall sample processing time with low fraction volumes and same-day drying when compared with traditional semi-preparative techniques. There is a significant 50-fold reduction in solvent usage per run, resulting in a much lower cost of solvent and waste handling. Fluidic pathways have been optimized for collection into tared high-density 96 or 384 well 2D barcoded storage tubes in a microtiter plate (MTP) layout. Coupling the system to robotics has enabled us to implement a fully integrated automation platform with additional capabilities for small-scale purification at high speed and reduced cost of materials. The resulting arrays of small-quantity, high-purity compounds enable synthetic route scouting for HTE and HTS for biological target validation.


Subject(s)
Drug Discovery/methods , Microfluidic Analytical Techniques/methods , Pharmaceutical Preparations/isolation & purification , Chromatography, High Pressure Liquid/methods , Time Factors
9.
ACS Med Chem Lett ; 9(7): 652-656, 2018 Jul 12.
Article in English | MEDLINE | ID: mdl-30034595

ABSTRACT

Identification of ligands that selectively activate the M1 muscarinic signaling pathway has been sought for decades to treat a range of neurological and cognitive disorders. Herein, we describe the optimization efforts focused on addressing key physicochemical and safety properties, ultimately leading to the clinical candidate MK-7622, a highly selective positive allosteric modulator of the M1 muscarinic receptor that has entered Phase II studies in patients with Alzheimer's disease.

10.
J Med Chem ; 60(7): 2983-2992, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28245354

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) is a large, multidomain protein which contains a kinase domain and GTPase domain among other regions. Individuals possessing gain of function mutations in the kinase domain such as the most prevalent G2019S mutation have been associated with an increased risk for the development of Parkinson's disease (PD). Given this genetic validation for inhibition of LRRK2 kinase activity as a potential means of affecting disease progression, our team set out to develop LRRK2 inhibitors to test this hypothesis. A high throughput screen of our compound collection afforded a number of promising indazole leads which were truncated in order to identify a minimum pharmacophore. Further optimization of these indazoles led to the development of MLi-2 (1): a potent, highly selective, orally available, brain-penetrant inhibitor of LRRK2.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Indazoles/chemistry , Indazoles/pharmacology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Animals , Brain/metabolism , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacokinetics , Humans , Indazoles/administration & dosage , Indazoles/pharmacokinetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Male , Molecular Docking Simulation , Parkinson Disease/drug therapy , Parkinson Disease/enzymology , Rats , Rats, Wistar
11.
Angew Chem Int Ed Engl ; 55(44): 13714-13718, 2016 10 24.
Article in English | MEDLINE | ID: mdl-27690172

ABSTRACT

The reactivity of a representative set of 17 organozinc pivalates with 18 polyfunctional druglike electrophiles (informers) in Negishi cross-coupling reactions was evaluated by high-throughput experimentation protocols. The high-fidelity scaleup of successful reactions in parallel enabled the isolation of sufficient material for biological testing, thus demonstrating the high value of these new solid zinc reagents in a drug-discovery setting and potentially for many other applications in chemistry. Principal component analysis (PCA) clearly defined the independent roles of the zincates and the informers toward druggable-space coverage.


Subject(s)
Organometallic Compounds/chemistry , Pyridines/chemical synthesis , Zinc/chemistry , High-Throughput Screening Assays , Molecular Structure , Principal Component Analysis , Pyridines/chemistry
12.
ACS Med Chem Lett ; 7(7): 702-7, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-27437081

ABSTRACT

A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile.

13.
Bioorg Med Chem Lett ; 26(11): 2631-5, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27106707

ABSTRACT

Familial Parkinson's disease cases have recently been associated with the leucine rich repeat kinase 2 (LRRK2) gene. It has been hypothesized that inhibition of the LRRK2 protein may have the potential to alter disease pathogenesis. A dihydrobenzothiophene series of potent, selective, orally bioavailable LRRK2 inhibitors were identified from a high-throughput screen of the internal Merck sample collection. Initial SAR studies around the core established the series as a tractable small molecule lead series of LRRK2 inhibitors for potential treatment of Parkinson's disease. It was also found that incorporation of a lactam into the core drastically improved the CNS and DMPK properties of these small molecules.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Thiophenes/pharmacology , Administration, Oral , Biological Availability , Dose-Response Relationship, Drug , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/chemistry
14.
ACS Med Chem Lett ; 3(12): 1070-4, 2012 Dec 13.
Article in English | MEDLINE | ID: mdl-24900430

ABSTRACT

Selective activation of the M1 muscarinic receptor via positive allosteric modulation represents an approach to treat the cognitive decline in patients with Alzheimer's disease. A series of amides were examined as a replacement for the carboxylic acid moiety in a class of quinolizidinone carboxylic acid M1 muscarinic receptor positive allosteric modulators, and leading pyran 4o and cyclohexane 5c were found to possess good potency and in vivo efficacy.

15.
Tetrahedron Lett ; 52(16): 1987-1989, 2011 Apr 20.
Article in English | MEDLINE | ID: mdl-22140279

ABSTRACT

Notoamide E, a short-lived secondary metabolite, has been proposed as a biosynthetic intermediate to several advanced metabolites isolated from Aspergillus versicolor. In order to verify the role of this indole alkaloid along the biosynthetic pathway, synthetic doubly (13)C-labeled notoamide E was fed to Aspergillus versicolor. Analysis of the metabolites showed significant incorporation of notoamide E into the natural products notoamides C and D.

16.
Org Lett ; 13(15): 3802-5, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21714564

ABSTRACT

The advanced natural product stephacidin A is proposed as a biosynthetic precursor to notoamide B in various Aspergillus species. Doubly (13)C-labeled racemic stephacidin A was synthesized and fed to cultures of the terrestrial-derived fungus, Aspergillus versicolor NRRL 35600, and the marine-derived fungus, Aspergillus sp. MF297-2. Analysis of the metabolites revealed enantiospecific incorporation of intact (-)-stephacidin A into (+)-notoamide B in Aspergillus versicolor and (+)-stephacidin A into (-)-notoamide B in Aspergillus sp. MF297-2. (13)C-Labeled sclerotiamide was also isolated from both fungal cultures.


Subject(s)
Aspergillus/chemistry , Biological Products/chemistry , Indole Alkaloids/chemistry , Indolizines/chemistry , Spiro Compounds/chemistry , Aspergillus/metabolism , Biological Products/metabolism , Carbon Isotopes/chemistry , Carbon Isotopes/metabolism , Indole Alkaloids/metabolism , Indolizines/metabolism , Molecular Structure , Spiro Compounds/metabolism
17.
J Med Chem ; 54(13): 4773-80, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21682298

ABSTRACT

One approach to ameliorate the cognitive decline in Alzheimer's disease (AD) has been to restore neuronal signaling from the basal forebrain cholinergic system via the activation of the M(1) muscarinic receptor. A number of nonselective M(1) muscarinic agonists have previously shown positive effects on cognitive behaviors in AD patients, but were limited due to cholinergic adverse events thought to be mediated by the activation of the M(2) to M(5) subtypes. One strategy to confer selectivity for M(1) is the identification of positive allosteric modulators, which would target an allosteric site on the M(1) receptor rather than the highly conserved orthosteric acetylcholine binding site. Quinoline carboxylic acids have been previously identified as highly selective M(1) positive allosteric modulators with good pharmacokinetic and in vivo properties. Herein is described the optimization of a novel quinolizidinone carboxylic acid scaffold with 4-cyanopiperidines being a key discovery in terms of enhanced activity. In particular, modulator 4i gave high plasma free fractions, enhanced central nervous system (CNS) exposure, was efficacious in a rodent in vivo model of cognition, and afforded good physicochemical properties suitable for further preclinical evaluation.


Subject(s)
Cholinergic Agents/chemical synthesis , Nitriles/chemical synthesis , Nootropic Agents/chemical synthesis , Piperidines/chemical synthesis , Quinolizidines/chemical synthesis , Quinolizines/chemical synthesis , Receptor, Muscarinic M1/physiology , Allosteric Regulation , Animals , Biological Availability , CHO Cells , Cholinergic Agents/chemistry , Cholinergic Agents/pharmacology , Cricetinae , Cricetulus , Fear/drug effects , Humans , Male , Mice , Nitriles/chemistry , Nitriles/pharmacology , Nootropic Agents/chemistry , Nootropic Agents/pharmacology , Piperidines/chemistry , Piperidines/pharmacology , Quinolizidines/chemistry , Quinolizidines/pharmacology , Quinolizines/chemistry , Quinolizines/pharmacology , Structure-Activity Relationship
18.
J Am Chem Soc ; 132(36): 12733-40, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20722388

ABSTRACT

Stephacidin and notoamide natural products belong to a group of prenylated indole alkaloids containing a core bicyclo[2.2.2]diazaoctane ring system. These bioactive fungal secondary metabolites have a range of unusual structural and stereochemical features but their biosynthesis has remained uncharacterized. Herein, we report the first biosynthetic gene cluster for this class of fungal alkaloids based on whole genome sequencing of a marine-derived Aspergillus sp. Two central pathway enzymes catalyzing both normal and reverse prenyltransfer reactions were characterized in detail. Our results establish the early steps for creation of the prenylated indole alkaloid structure and suggest a scheme for the biosynthesis of stephacidin and notoamide metabolites. The work provides the first genetic and biochemical insights for understanding the structural diversity of this important family of fungal alkaloids.


Subject(s)
Antineoplastic Agents/metabolism , Aspergillus/genetics , Biological Factors/biosynthesis , Genome , Indole Alkaloids/metabolism , Animals , Antineoplastic Agents/chemistry , Aspergillus/metabolism , Biological Factors/chemistry , Biological Factors/metabolism , Indole Alkaloids/chemistry , Molecular Conformation , Prenylation , Stereoisomerism
19.
Tetrahedron Lett ; 51(50): 6557-6559, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21286237

ABSTRACT

The cyclopentane core of palau'amine has been constructed in optically pure form through the use of an asymmetric azomethine ylid [1,3]-dipolar cycloaddition reaction.

20.
Org Lett ; 11(6): 1297-300, 2009 Mar 19.
Article in English | MEDLINE | ID: mdl-19281134

ABSTRACT

Antipodal (-)-versicolamide B and notoamides L-N were isolated from a marine-derived Aspergillus sp. The possible biosynthetic pathway of enantiomeric pairs of notoamide B and versicolamide B are proposed. Notoamide L is the first metabolite containing 25 carbons in the related prenylated indole alkaloids. Notoamide M is potentially a precursor to the proposed azadiene species involved in the putative intramolecular Diels-Alder reaction in the biogenesis of the bicyclo[2.2.2]diazaoctane ring system.


Subject(s)
Aspergillus/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Indole Alkaloids/isolation & purification , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Indole Alkaloids/chemistry , Marine Biology , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...