Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 19(7): e0307750, 2024.
Article in English | MEDLINE | ID: mdl-39052598

ABSTRACT

Increased production of Prostaglandin D2 (PGD2) is linked to development and progression of asthma and allergy. PGD2 is rapidly degraded to its metabolites, which initiate type 2 innate lymphoid cells (ILC2) migration and IL-5/IL-13 cytokine secretion in a PGD2 receptor 2 (DP2)-dependent manner. Blockade of DP2 has shown therapeutic benefit in subsets of asthma patients. Cellular mechanisms of ILC2 activity in response to PGD2 and its metabolites are still unclear. We hypothesized that ILC2 respond non-uniformly to PGD2 metabolites. ILC2s were isolated from peripheral blood of patients with atopic asthma. ILC2s were stimulated with PGD2 and four PGD2 metabolites (Δ12-PGJ2, Δ12-PGD2, 15-deoxyΔ12,14-PGD2, 9α,11ß-PGF2) with or without the selective DP2 antagonist fevipiprant. Total RNA was sequenced, and differentially expressed genes (DEG) were identified by DeSeq2. Differential gene expression analysis revealed an upregulation of pro-inflammatory DEGs in ILC2s stimulated with PGD2 (14 DEGs), Δ12-PGD2 (27 DEGs), 15-deoxyΔ12,14-PGD2 (56 DEGs) and Δ12-PGJ2 (136 DEGs), but not with 9α,11ß-PGF2. Common upregulated DEGs were i.e. ARG2, SLC43A2, LAYN, IGFLR1, or EPHX2. Inhibition of DP2 via fevipiprant mainly resulted in downregulation of pro-inflammatory genes such as DUSP4, SPRED2, DUSP6, ETV1, ASB2, CD38, ADGRG1, DDIT4, TRPM2, or CD69. DEGs were related to migration and various immune response-relevant pathways such as "chemokine (C-C motif) ligand 4 production", "cell migration", "interleukin-13 production", "regulation of receptor signaling pathway via JAK-STAT", or "lymphocyte apoptotic process", underlining the pro-inflammatory effects of PGD2 metabolite-induced immune responses in ILC2s as well as the anti-inflammatory effects of DP2 inhibition via fevipiprant. Furthermore, PGD2 and metabolites showed distinct profiles in ILC2 activation. Overall, these results expand our understanding of DP2 initiated ILC2 activity.


Subject(s)
Asthma , Immunity, Innate , Lymphocytes , Prostaglandin D2 , Receptors, Immunologic , Receptors, Prostaglandin , Signal Transduction , Humans , Asthma/immunology , Asthma/metabolism , Receptors, Prostaglandin/metabolism , Receptors, Prostaglandin/antagonists & inhibitors , Prostaglandin D2/metabolism , Receptors, Immunologic/metabolism , Lymphocytes/metabolism , Lymphocytes/immunology , Lymphocytes/drug effects , Female , Male , Adult , Indoleacetic Acids , Pyridines
2.
Sci Rep ; 14(1): 1721, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38242945

ABSTRACT

Segmental instillation of lipopolysaccharide (LPS) by bronchoscopy safely induces transient airway inflammation in human lungs. This model enables investigation of pulmonary inflammatory mechanisms as well as pharmacodynamic analysis of investigational drugs. The aim of this work was to describe the transcriptomic profile of human segmental LPS challenge with contextualization to major respiratory diseases. Pre-challenge bronchoalveolar lavage (BAL) fluid and biopsies were sampled from 28 smoking, healthy participants, followed by segmental instillation of LPS and saline as control. Twenty-four hours post instillation, BAL and biopsies were collected from challenged lung segments. Total RNA of cells from BAL and biopsy samples were sequenced and analysed for differentially expressed genes (DEGs). After challenge with LPS compared with saline, 6316 DEGs were upregulated and 241 were downregulated in BAL, but only one DEG was downregulated in biopsy samples. Upregulated DEGs in BAL were related to molecular functions such as "Inflammatory response" or "chemokine receptor activity", and upregulated pro-inflammatory pathways such as "Wnt-"/"Ras-"/"JAK-STAT" "-signaling pathway". Furthermore, the segmental LPS challenge model resembled aspects of the five most prevalent respiratory diseases chronic obstructive pulmonary disease (COPD), asthma, pneumonia, tuberculosis and lung cancer and featured similarities with acute exacerbations in COPD (AECOPD) and community-acquired pneumonia. Overall, our study provides extensive information about the transcriptomic profile from BAL cells and mucosal biopsies following LPS challenge in healthy smokers. It expands the knowledge about the LPS challenge model providing potential overlap with respiratory diseases in general and infection-triggered respiratory insults such as AECOPD in particular.


Subject(s)
Asthma , Pneumonia , Pulmonary Disease, Chronic Obstructive , Humans , Endotoxins , Lipopolysaccharides/pharmacology , Lung/pathology , Asthma/pathology , Pneumonia/pathology , Bronchoalveolar Lavage Fluid , Gene Expression Profiling
3.
Pulm Pharmacol Ther ; 82: 102246, 2023 10.
Article in English | MEDLINE | ID: mdl-37562641

ABSTRACT

BACKGROUND: Bradykinin 1 receptor (B1R) signalling pathways may be involved in the inflammatory pathophysiology of chronic obstructive pulmonary disease (COPD). B1R signalling is induced by inflammatory stimuli or tissue injury and leads to activation and increased migration of pro-inflammatory cells. Lipopolysaccharide (LPS) lung challenge in man is an experimental method of exploring inflammation in the lung whereby interference in these pathways can help to assess pharmacologic interventions in COPD. BI 1026706, a potent B1R antagonist, was hypothesized to reduce the inflammatory activity after segmental lipopolysaccharide (LPS) challenge in humans due to decreased pulmonary cell influx. METHODS: In a monocentric, randomized, double-blind, placebo-controlled, parallel-group, phase I trial, 57 healthy, smoking subjects were treated for 28 days with either oral BI 1026706 100 mg bid or placebo. At day 21, turbo-inversion recovery magnitude magnetic resonance imaging (TIRM MRI) was performed. On the last day of treatment, pre-challenge bronchoalveolar lavage fluid (BAL) and biopsies were sampled, followed by segmental LPS challenge (40 endotoxin units/kg body weight) and saline control instillation in different lung lobes. Twenty-four hours later, TIRM MRI was performed, then BAL and biopsies were collected from the challenged segments. In BAL samples, cells were differentiated for neutrophil numbers as the primary endpoint. Other endpoints included assessment of safety, biomarkers in BAL (e.g. interleukin-8 [IL-8], albumin and total protein), B1R expression in lung biopsies and TIRM score by MRI as a measure for the extent of pulmonary oedema. RESULTS: After LPS, but not after saline, high numbers of inflammatory cells, predominantly neutrophils were observed in the airways. IL-8, albumin and total protein were also increased in BAL samples after LPS challenge as compared with saline control. There were no significant differences in cells or other biomarkers from BAL in volunteers treated with BI 1026706 compared with those treated with placebo. Unexpectedly, neutrophil numbers in BAL were 30% higher and MRI-derived extent of oedema was significantly higher with BI 1026706 treatment compared with placebo, 24 h after LPS challenge. Adverse events were mainly mild to moderate and not different between treatment groups. CONCLUSIONS: Treatment with BI 1026706 for four weeks was safe and well-tolerated in healthy smoking subjects. BI 1026706 100 mg bid did not provide evidence for anti-inflammatory effects in the human bronchial LPS challenge model. TRIAL REGISTRATION: The study was registered on January 14, 2016 at ClinicalTrials.gov (NCT02657408).


Subject(s)
Pneumonia , Pulmonary Disease, Chronic Obstructive , Humans , Lipopolysaccharides , Interleukin-8 , Bradykinin/pharmacology , Smokers , Pneumonia/drug therapy , Pneumonia/chemically induced , Inflammation/drug therapy , Inflammation/chemically induced , Bronchoalveolar Lavage Fluid , Pulmonary Disease, Chronic Obstructive/drug therapy , Biomarkers , Albumins/adverse effects
4.
Respir Res ; 22(1): 262, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34620168

ABSTRACT

BACKGROUND: Prostaglandin D2 (PGD2) signaling via prostaglandin D2 receptor 2 (DP2) contributes to atopic and non-atopic asthma. Inhibiting DP2 has shown therapeutic benefit in certain subsets of asthma patients, improving eosinophilic airway inflammation. PGD2 metabolites prolong the inflammatory response in asthmatic patients via DP2 signaling. The role of PGD2 metabolites on eosinophil and ILC2 activity is not fully understood. METHODS: Eosinophils and ILC2s were isolated from peripheral blood of atopic asthmatic patients. Eosinophil shape change, ILC2 migration and IL-5/IL-13 cytokine secretion were measured after stimulation with seven PGD2 metabolites in presence or absence of the selective DP2 antagonist fevipiprant. RESULTS: Selected metabolites induced eosinophil shape change with similar nanomolar potencies except for 9α,11ß-PGF2. Maximal values in forward scatter of eosinophils were comparable between metabolites. ILC2s migrated dose-dependently in the presence of selected metabolites except for 9α,11ß-PGF2 with EC50 values ranging from 17.4 to 91.7 nM. Compared to PGD2, the absolute cell migration was enhanced in the presence of Δ12-PGD2, 15-deoxy-Δ12,14-PGD2, PGJ2, Δ12-PGJ2 and 15-deoxy-Δ12,14-PGJ2. ILC2 cytokine production was dose dependent as well but with an average sixfold reduced potency compared to cell migration (IL-5 range 108.1 to 526.9 nM, IL-13 range: 125.2 to 788.3 nM). Compared to PGD2, the absolute cytokine secretion was reduced in the presence of most metabolites. Fevipiprant dose-dependently inhibited eosinophil shape change, ILC2 migration and ILC2 cytokine secretion with (sub)-nanomolar potencies. CONCLUSION: Prostaglandin D2 metabolites initiate ILC2 migration and IL-5 and IL-13 cytokine secretion in a DP2 dependent manner. Our data indicate that metabolites may be important for in vivo eosinophil activation and ILC2 migration and to a lesser extent for ILC2 cytokine secretion.


Subject(s)
Asthma/drug therapy , Eosinophils/drug effects , Lymphocytes/drug effects , Prostaglandin D2/pharmacology , Receptors, Immunologic/agonists , Receptors, Prostaglandin/agonists , Adolescent , Adult , Aged , Asthma/immunology , Asthma/metabolism , Cell Movement/drug effects , Cell Shape/drug effects , Cells, Cultured , Eosinophils/immunology , Eosinophils/metabolism , Female , Humans , Indoleacetic Acids/pharmacology , Interleukin-13/metabolism , Interleukin-5/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Male , Middle Aged , Prostaglandin Antagonists/pharmacology , Prostaglandin D2/analogs & derivatives , Pyridines/pharmacology , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , Signal Transduction , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL