Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 513(7518): 375-381, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25186727

ABSTRACT

Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.


Subject(s)
Cichlids/classification , Cichlids/genetics , Evolution, Molecular , Genetic Speciation , Genome/genetics , Africa, Eastern , Animals , DNA Transposable Elements/genetics , Gene Duplication/genetics , Gene Expression Regulation/genetics , Genomics , Lakes , MicroRNAs/genetics , Phylogeny , Polymorphism, Genetic/genetics
2.
Mol Ecol ; 22(3): 787-98, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23057853

ABSTRACT

Although population genomic studies using next generation sequencing (NGS) data are becoming increasingly common, studies focusing on phylogenetic inference using these data are in their infancy. Here, we use NGS data generated from reduced representation genomic libraries of restriction-site-associated DNA (RAD) markers to infer phylogenetic relationships among 16 species of cichlid fishes from a single rocky island community within Lake Victoria's cichlid adaptive radiation. Previous attempts at sequence-based phylogenetic analyses in Victoria cichlids have shown extensive sharing of genetic variation among species and no resolution of species or higher-level relationships. These patterns have generally been attributed to the very recent origin (<15,000 years) of the radiation, and ongoing hybridization between species. We show that as we increase the amount of sequence data used in phylogenetic analyses, we produce phylogenetic trees with unprecedented resolution for this group. In trees derived from our largest data supermatrices (3 to >5.8 million base pairs in width), species are reciprocally monophyletic with high bootstrap support, and the majority of internal branches on the tree have high support. Given the difficulty of the phylogenetic problem that the Lake Victoria cichlid adaptive radiation represents, these results are striking. The strict interpretation of the topologies we present here warrants caution because many questions remain about phylogenetic inference with very large genomic data set and because we can with the current analysis not distinguish between effects of shared ancestry and post-speciation gene flow. However, these results provide the first conclusive evidence for the monophyly of species in the Lake Victoria cichlid radiation and demonstrate the power that NGS data sets hold to resolve even the most difficult of phylogenetic challenges.


Subject(s)
Cichlids/classification , Evolution, Molecular , Genetic Speciation , Phylogeny , Sequence Analysis, DNA/methods , Animals , Cichlids/genetics , Lakes , Polymorphism, Single Nucleotide , Tanzania
SELECTION OF CITATIONS
SEARCH DETAIL