Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Haematologica ; 109(8): 2639-2652, 2024 08 01.
Article in English | MEDLINE | ID: mdl-38450513

ABSTRACT

Mitapivat, a pyruvate kinase activator, shows great potential as a sickle cell disease (SCD)-modifying therapy. The safety and efficacy of mitapivat as a long-term maintenance therapy are currently being evaluated in two open-label studies. Here we applied a comprehensive multi-omics approach to investigate the impact of activating pyruvate kinase on red blood cells (RBC) from 15 SCD patients. HbSS patients were enrolled in one of the open-label, extended studies (NCT04610866). Leukodepleted RBC obtained from fresh whole blood at baseline, prior to drug initiation, and at longitudinal timepoints over the course of the study were processed for multi-omics through a stepwise extraction of metabolites, lipids and proteins. Mitapivat therapy had significant effects on the metabolome, lipidome and proteome of SCD RBC. Mitapivat decreased 2,3-diphosphoglycerate levels, increased adenosine triphosphate levels, and improved hematologic and sickling parameters in patients with SCD. Agreement between omics measurements and clinical measurements confirmed the specificity of mitapivat on targeting late glycolysis, with glycolytic metabolites ranking as the top correlates to parameters of hemoglobin S oxygen affinity (p50) and sickling kinetics (t50) during treatment. Mitapivat markedly reduced levels of proteins of mitochondrial origin within 2 weeks of initiation of treatment, with minimal changes in reticulocyte counts. In the first 6 months of treatment there were also transient elevations of lysophosphatidylcholines and oxylipins with depletion of free fatty acids, suggestive of an effect on membrane lipid remodeling. Multi-omics analysis of RBC identified benefits for glycolysis, as well as activation of the Lands cycle.


Subject(s)
Anemia, Sickle Cell , Erythrocytes , Pyruvate Kinase , Adult , Female , Humans , Male , Young Adult , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/blood , Enzyme Activation , Enzyme Activators/therapeutic use , Enzyme Activators/pharmacology , Erythrocytes/metabolism , Glycolysis/drug effects , Metabolome , Metabolomics/methods , Multiomics , Proteome , Proteomics/methods , Pyruvate Kinase/metabolism , Treatment Outcome
2.
Nat Metab ; 5(9): 1544-1562, 2023 09.
Article in English | MEDLINE | ID: mdl-37563469

ABSTRACT

Resistance of melanoma to targeted therapy and immunotherapy is linked to metabolic rewiring. Here, we show that increased fatty acid oxidation (FAO) during prolonged BRAF inhibitor (BRAFi) treatment contributes to acquired therapy resistance in mice. Targeting FAO using the US Food and Drug Administration-approved and European Medicines Agency-approved anti-anginal drug ranolazine (RANO) delays tumour recurrence with acquired BRAFi resistance. Single-cell RNA-sequencing analysis reveals that RANO diminishes the abundance of the therapy-resistant NGFRhi neural crest stem cell subpopulation. Moreover, by rewiring the methionine salvage pathway, RANO enhances melanoma immunogenicity through increased antigen presentation and interferon signalling. Combination of RANO with anti-PD-L1 antibodies strongly improves survival by increasing antitumour immune responses. Altogether, we show that RANO increases the efficacy of targeted melanoma therapy through its effects on FAO and the methionine salvage pathway. Importantly, our study suggests that RANO could sensitize BRAFi-resistant tumours to immunotherapy. Since RANO has very mild side-effects, it might constitute a therapeutic option to improve the two main strategies currently used to treat metastatic melanoma.


Subject(s)
Melanoma , United States , Animals , Mice , Ranolazine/pharmacology , Ranolazine/therapeutic use , Melanoma/drug therapy , Melanoma/metabolism , Immunotherapy , Protein Kinase Inhibitors/pharmacology , Methionine
3.
Cancer Cell ; 41(5): 950-969.e6, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37116489

ABSTRACT

In pancreatic ductal adenocarcinoma (PDAC) patients, we show that response to radiation therapy (RT) is characterized by increased IL-2Rß and IL-2Rγ along with decreased IL-2Rα expression. The bispecific PD1-IL2v is a PD-1-targeted IL-2 variant (IL-2v) immunocytokine with engineered IL-2 cis targeted to PD-1 and abolished IL-2Rα binding, which enhances tumor-antigen-specific T cell activation while reducing regulatory T cell (Treg) suppression. Using PD1-IL2v in orthotopic PDAC KPC-driven tumor models, we show marked improvement in local and metastatic survival, along with a profound increase in tumor-infiltrating CD8+ T cell subsets with a transcriptionally and metabolically active phenotype and preferential activation of antigen-specific CD8+ T cells. In combination with single-dose RT, PD1-IL2v treatment results in a robust, durable expansion of polyfunctional CD8+ T cells, T cell stemness, tumor-specific memory immune response, natural killer (NK) cell activation, and decreased Tregs. These data show that PD1-IL2v leads to profound local and distant response in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , CD8-Positive T-Lymphocytes , Programmed Cell Death 1 Receptor , Interleukin-2 Receptor alpha Subunit/therapeutic use , Interleukin-2/pharmacology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/radiotherapy , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/radiotherapy , Carcinoma, Pancreatic Ductal/drug therapy , Immunotherapy
SELECTION OF CITATIONS
SEARCH DETAIL