Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Acta Neuropathol ; 144(3): 437-464, 2022 09.
Article in English | MEDLINE | ID: mdl-35876881

ABSTRACT

Dysfunction and degeneration of synapses is a common feature of amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). A GGGGCC hexanucleotide repeat expansion in the C9ORF72 gene is the main genetic cause of ALS/FTD (C9ALS/FTD). The repeat expansion leads to reduced expression of the C9orf72 protein. How C9orf72 haploinsufficiency contributes to disease has not been resolved. Here we identify the synapsin family of synaptic vesicle proteins, the most abundant group of synaptic phosphoproteins, as novel interactors of C9orf72 at synapses and show that C9orf72 plays a cell-autonomous role in the regulation of excitatory synapses. We mapped the interaction of C9orf72 and synapsin to the N-terminal longin domain of C9orf72 and the conserved C domain of synapsin, and show interaction of the endogenous proteins in synapses. Functionally, C9orf72 deficiency reduced the number of excitatory synapses and decreased synapsin levels at remaining synapses in vitro in hippocampal neuron cultures and in vivo in the hippocampal mossy fibre system of C9orf72 knockout mice. Consistent with synaptic dysfunction, electrophysiological recordings identified impaired excitatory neurotransmission and network function in hippocampal neuron cultures with reduced C9orf72 expression, which correlated with a severe depletion of synaptic vesicles from excitatory synapses in the hippocampus of C9orf72 knockout mice. Finally, neuropathological analysis of post-mortem sections of C9ALS/FTD patient hippocampus with C9orf72 haploinsufficiency revealed a marked reduction in synapsin, indicating that disruption of the interaction between C9orf72 and synapsin may contribute to ALS/FTD pathobiology. Thus, our data show that C9orf72 plays a cell-autonomous role in the regulation of neurotransmission at excitatory synapses by interaction with synapsin and modulation of synaptic vesicle pools, and identify a novel role for C9orf72 haploinsufficiency in synaptic dysfunction in C9ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein/metabolism , Frontotemporal Dementia , Synapsins/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , C9orf72 Protein/genetics , DNA Repeat Expansion , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Mice , Mice, Knockout , Synapses/pathology
2.
Life Sci Alliance ; 5(9)2022 09.
Article in English | MEDLINE | ID: mdl-35568435

ABSTRACT

Dipeptide repeat (DPR) proteins are aggregation-prone polypeptides encoded by the pathogenic GGGGCC repeat expansion in the C9ORF72 gene, the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. In this study, we focus on the role of poly-GA DPRs in disease spread. We demonstrate that recombinant poly-GA oligomers can directly convert into solid-like aggregates and form characteristic ß-sheet fibrils in vitro. To dissect the process of cell-to-cell DPR transmission, we closely follow the fate of poly-GA DPRs in either their oligomeric or fibrillized form after administration in the cell culture medium. We observe that poly-GA DPRs are taken up via dynamin-dependent and -independent endocytosis, eventually converging at the lysosomal compartment and leading to axonal swellings in neurons. We then use a co-culture system to demonstrate astrocyte-to-motor neuron DPR propagation, showing that astrocytes may internalise and release aberrant peptides in disease pathogenesis. Overall, our results shed light on the mechanisms of poly-GA cellular uptake and propagation, suggesting lysosomal impairment as a possible feature underlying the cellular pathogenicity of these DPR species.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , Dipeptides , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Humans , Motor Neurons/metabolism
3.
Front Cell Neurosci ; 16: 1061559, 2022.
Article in English | MEDLINE | ID: mdl-36619668

ABSTRACT

Disruption to protein homeostasis caused by lysosomal dysfunction and associated impairment of autophagy is a prominent pathology in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). The most common genetic cause of ALS/FTD is a G4C2 hexanucleotide repeat expansion in C9orf72 (C9ALS/FTD). Repeat-associated non-AUG (RAN) translation of G4C2 repeat transcripts gives rise to dipeptide repeat (DPR) proteins that have been shown to be toxic and may contribute to disease etiology. Genetic variants in TMEM106B have been associated with frontotemporal lobar degeneration with TDP-43 pathology and disease progression in C9ALS/FTD. TMEM106B encodes a lysosomal transmembrane protein of unknown function that is involved in various aspects of lysosomal biology. How TMEM106B variants affect C9ALS/FTD is not well understood but has been linked to changes in TMEM106B protein levels. Here, we investigated TMEM106B function in the context of C9ALS/FTD DPR pathology. We report that knockdown of TMEM106B expression exacerbates the accumulation of C9ALS/FTD-associated cytotoxic DPR proteins in cell models expressing RAN-translated or AUG-driven DPRs as well as in C9ALS/FTD-derived iAstrocytes with an endogenous G4C2 expansion by impairing autophagy. Loss of TMEM106B caused a block late in autophagy by disrupting autophagosome to autolysosome maturation which coincided with impaired lysosomal acidification, reduced cathepsin activity, and juxtanuclear clustering of lysosomes. Lysosomal clustering required Rab7A and coincided with reduced Arl8b-mediated anterograde transport of lysosomes to the cell periphery. Increasing Arl8b activity in TMEM106B-deficient cells not only restored the distribution of lysosomes, but also fully rescued autophagy and DPR protein accumulation. Thus, we identified a novel function of TMEM106B in autophagosome maturation via Arl8b. Our findings indicate that TMEM106B variants may modify C9ALS/FTD by regulating autophagic clearance of DPR proteins. Caution should therefore be taken when considering modifying TMEM106B expression levels as a therapeutic approach in ALS/FTD.

4.
Development ; 148(20)2021 10 15.
Article in English | MEDLINE | ID: mdl-34568948

ABSTRACT

During early vertebrate heart development, the heart transitions from a linear tube to a complex asymmetric structure, a morphogenetic process that occurs simultaneously with growth of the heart. Cardiac growth during early heart morphogenesis is driven by deployment of cells from the second heart field (SHF) into both poles of the heart. Laminin is a core component of the extracellular matrix and, although mutations in laminin subunits are linked with cardiac abnormalities, no role for laminin has been identified in early vertebrate heart morphogenesis. We identified tissue-specific expression of laminin genes in the developing zebrafish heart, supporting a role for laminins in heart morphogenesis. Analysis of heart development in lamb1a zebrafish mutant embryos reveals mild morphogenetic defects and progressive cardiomegaly, and that Lamb1a functions to limit heart size during cardiac development by restricting SHF addition. lamb1a mutants exhibit hallmarks of altered haemodynamics, and blocking cardiac contractility in lamb1a mutants rescues heart size and atrial SHF addition. Together, these results suggest that laminin mediates interactions between SHF deployment and cardiac biomechanics during heart morphogenesis and growth in the developing embryo.


Subject(s)
Heart Atria/metabolism , Heart/physiology , Laminin/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Cell Lineage/physiology , Gene Expression Regulation, Developmental/physiology , Heart Defects, Congenital/metabolism , Morphogenesis/physiology , Myocardium/metabolism , Organogenesis/physiology
5.
Front Cell Dev Biol ; 9: 676214, 2021.
Article in English | MEDLINE | ID: mdl-34268305

ABSTRACT

Cilia are evolutionarily highly conserved organelles with important functions in many organs. The extracellular component of the cilium protruding from the plasma membrane comprises an axoneme composed of microtubule doublets, arranged in a 9 + 0 conformation in primary cilia or 9 + 2 in motile cilia. These microtubules facilitate transport of intraflagellar cargoes along the axoneme. They also provide structural stability to the cilium, which may play an important role in sensory cilia, where signals are received from the movement of extracellular fluid. Post-translational modification of microtubules in cilia is a well-studied phenomenon, and acetylation on lysine 40 (K40) of alpha tubulin is prominent in cilia. It is believed that this modification contributes to the stabilization of cilia. Two classes of enzymes, histone acetyltransferases and histone deacetylases, mediate regulation of tubulin acetylation. Here we use a genetic approach, immunocytochemistry and behavioral tests to investigate the function of tubulin deacetylases in cilia in a zebrafish model. By mutating three histone deacetylase genes (Sirt2, Hdac6, and Hdac10), we identify an unforeseen role for Hdac6 and Sirt2 in cilia. As expected, mutation of these genes leads to increased acetylation of cytoplasmic tubulin, however, surprisingly it caused decreased tubulin acetylation in cilia in the developing eye, ear, brain and kidney. Cilia in the ear and eye showed elevated levels of mono-glycylated tubulin suggesting a compensatory mechanism. These changes did not affect the length or morphology of cilia, however, functional defects in balance was observed, suggesting that the level of tubulin acetylation may affect function of the cilium.

6.
Autophagy ; 17(6): 1448-1457, 2021 06.
Article in English | MEDLINE | ID: mdl-32559122

ABSTRACT

Macroautophagy/autophagy functions to degrade cellular components and intracellular pathogens. Autophagy receptors, including SQSTM1/p62, target intracellular pathogens. Staphylococcus aureus is a significant pathogen of humans, especially in immunocompromise. S. aureus may use neutrophils as a proliferative niche, but their intracellular fate following phagocytosis has not been analyzed in vivo. In vitro, SQSTM1 can colocalize with intracellular Staphylococcus aureus, but whether SQSTM1 is beneficial or detrimental in host defense against S. aureus in vivo is unknown. Here we determine the fate and location of S. aureus within neutrophils throughout zebrafish infection. We show Lc3 and Sqstm1 recruitment to phagocytosed S. aureus is altered depending on the bacterial location within the neutrophil and that Lc3 marking of bacterial phagosomes within neutrophils may precede bacterial degradation. Finally, we show Sqstm1 is important for controlling cytosolic bacteria, demonstrating for the first time a key role of Sqstm1 in autophagic control of S. aureus in neutrophils.Abbreviations: AR: autophagy receptor; CFU: colony-forming unit; CHT: caudal hematopoietic tissue; GFP: green fluorescent protein; hpf: hours post-fertilization; hpi: hours post-infection; LWT: london wild-type: lyz: lysozyme; Map1lc3/Lc3: microtubule-associated protein 1 light chain 3; RFP: red fluorescent protein; Sqstm1/p62: sequestosome 1; Tg: transgenic; TSA: tyramide signal amplification; UBD: ubiquitin binding domain.


Subject(s)
Autophagy/physiology , Neutrophils/metabolism , Sequestosome-1 Protein/metabolism , Animals , Animals, Genetically Modified/metabolism , Macrophages/metabolism , Microtubule-Associated Proteins/metabolism , Phagosomes/metabolism , Staphylococcus aureus , Zebrafish/metabolism , Zebrafish Proteins/metabolism
7.
Life Sci Alliance ; 3(12)2020 12.
Article in English | MEDLINE | ID: mdl-33106322

ABSTRACT

Hereditary Spastic Paraplegia (HSP) is a neurodegenerative disease most commonly caused by autosomal dominant mutations in the SPG4 gene encoding the microtubule-severing protein spastin. We hypothesise that SPG4-HSP is attributable to reduced spastin function because of haploinsufficiency; thus, therapeutic approaches which elevate levels of the wild-type spastin allele may be an effective therapy. However, until now, how spastin levels are regulated is largely unknown. Here, we show that the kinase HIPK2 regulates spastin protein levels in proliferating cells, in differentiated neurons and in vivo. Our work reveals that HIPK2-mediated phosphorylation of spastin at S268 inhibits spastin K48-poly-ubiquitination at K554 and prevents its neddylation-dependent proteasomal degradation. In a spastin RNAi neuronal cell model, overexpression of HIPK2, or inhibition of neddylation, restores spastin levels and rescues neurite defects. Notably, we demonstrate that spastin levels can be restored pharmacologically by inhibiting its neddylation-mediated degradation in neurons derived from a spastin mouse model of HSP and in patient-derived cells, thus revealing novel therapeutic targets for the treatment of SPG4-HSP.


Subject(s)
Carrier Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Spastic Paraplegia, Hereditary/metabolism , Spastin/metabolism , Animals , Carrier Proteins/physiology , Disease Models, Animal , Gene Expression Regulation/genetics , HeLa Cells , Humans , Mice , Mice, Knockout , Microtubules/metabolism , Mutation , Neurites/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/physiopathology , Neurons/metabolism , Protein Serine-Threonine Kinases/physiology , Proteolysis , Spastic Paraplegia, Hereditary/physiopathology , Spastin/physiology , Synapses/metabolism , Ubiquitination
8.
BMJ Open Sci ; 3(1): e000016, 2019.
Article in English | MEDLINE | ID: mdl-35047680

ABSTRACT

OBJECTIVES: The amyotrophic lateral sclerosis (ALS) research community was one of the first to adopt methodology guidelines to improve preclinical research reproducibility. We here present the results of a systematic review to investigate how the standards in this field changed over the 10-year period during which the guidelines were first published (2007) and updated (2010). METHODS: We searched for papers reporting ALS research on SOD1 (superoxide dismutase 1) mice published between 2005 and 2015 on the ISI Web of Science database, resulting in a sample of 569 papers to review, after triage. Two scores-one for methodological quality, one for regulatory compliance-were built from weighted sums of separate sets of items, and subjected to multivariable regression analysis, to assess how these related to publication year, type of study, country of origin and journal. RESULTS: Reporting standards improved over time. Of papers published after the first ALS guidelines were made public, fewer than 9% referred specifically to these. Of key research parameters, only three (genetic background, number of transgenes and group size) were reported in >50% of the papers. Information on housing conditions, randomisation and blinding was absent in over two-thirds of the papers. Group size was among the best reported parameters, but the majority reported using fewer than the recommended sample size and only two studies clearly justified group size. CONCLUSIONS: General methodological standards improved gradually over a period of 8-10 years, but remained generally comparable with related fields with no specific guidelines, except with regard to severity. Only 11% of ALS studies were classified in the highest severity level (animals allowed to reach death or moribund stages), substantially below the proportion in studies of comparable neurodegenerative diseases such as Huntington's. The existence of field-specific guidelines, although a welcome indication of concern, seems insufficient to ensure adherence to high methodological standards. Other mechanisms may be required to improve methodological and welfare standards.

9.
Small GTPases ; 9(5): 399-408, 2018 09 03.
Article in English | MEDLINE | ID: mdl-27768524

ABSTRACT

A GGGGCC hexanucleotide repeat expansion in the first intron of the C9orf72 gene is the most common genetic defect associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) (C9ALS/FTD). Haploinsufficiency and a resulting loss of C9orf72 protein function has been suggested as a possible pathogenic mechanism in C9ALS/FTD. C9ALS/FTD patients exhibit specific ubiquitin and p62/sequestosome-1 positive but TDP-43 negative inclusions in the cerebellum and hippocampus, indicating possible autophagy deficits in these patients. In a recent study, we investigated this possibility by reducing expression of C9orf72 in cell lines and primary neurons and found that C9orf72 regulates the initiation of autophagy. C9orf72 interacts with Rab1a, preferentially in its GTP-bound state, as well as the ULK1 autophagy initiation complex. As an effector of Rab1a, C9orf72 controls the Rab1a-dependent trafficking of the ULK1 initiation complex prior to autophagosome formation. In line with this function, C9orf72 depletion in cell lines and primary neurons caused the accumulation of p62/sequestosome-1-positive inclusions. In support of a role in disease pathogenesis, C9ALS/FTD patient-derived iNeurons showed markedly reduced levels of autophagy. In this Commentary we summarise recent findings supporting the key role of C9orf72 in Rab GTPase-dependent regulation of autophagy and discuss autophagy dysregulation as a pathogenic mechanism in ALS/FTD.


Subject(s)
Autophagy , C9orf72 Protein/metabolism , rab GTP-Binding Proteins/metabolism , Humans
10.
EMBO J ; 35(15): 1656-76, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27334615

ABSTRACT

A GGGGCC hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). C9orf72 encodes two C9orf72 protein isoforms of unclear function. Reduced levels of C9orf72 expression have been reported in C9ALS/FTD patients, and although C9orf72 haploinsufficiency has been proposed to contribute to C9ALS/FTD, its significance is not yet clear. Here, we report that C9orf72 interacts with Rab1a and the Unc-51-like kinase 1 (ULK1) autophagy initiation complex. As a Rab1a effector, C9orf72 controls initiation of autophagy by regulating the Rab1a-dependent trafficking of the ULK1 autophagy initiation complex to the phagophore. Accordingly, reduction of C9orf72 expression in cell lines and primary neurons attenuated autophagy and caused accumulation of p62-positive puncta reminiscent of the p62 pathology observed in C9ALS/FTD patients. Finally, basal levels of autophagy were markedly reduced in C9ALS/FTD patient-derived iNeurons. Thus, our data identify C9orf72 as a novel Rab1a effector in the regulation of autophagy and indicate that C9orf72 haploinsufficiency and associated reductions in autophagy might be the underlying cause of C9ALS/FTD-associated p62 pathology.


Subject(s)
Autophagy-Related Protein-1 Homolog/metabolism , Autophagy , Cell Physiological Phenomena , Intracellular Signaling Peptides and Proteins/metabolism , Proteins/metabolism , rab1 GTP-Binding Proteins/metabolism , C9orf72 Protein , Cells, Cultured , Frontotemporal Dementia/pathology , Humans , Neurons/chemistry , Neurons/metabolism
11.
Mol Ther Methods Clin Dev ; 3: 15055, 2016.
Article in English | MEDLINE | ID: mdl-26942208

ABSTRACT

Current barriers to the use of adeno-associated virus serotype 9 (AAV9) in clinical trials for treating neurological disorders are its high expression in many off-target tissues such as liver and heart, and lack of cell specificity within the central nervous system (CNS) when using ubiquitous promoters such as human cytomegalovirus (CMV) or chicken-ß-actin hybrid (CAG). To enhance targeting the transgene expression in CNS cells, self-complementary (sc) AAV9 vectors, scAAV9-GFP vectors carrying neuronal Hb9 and synapsin 1, and nonspecific CMV and CAG promoters were constructed. We demonstrate that synapsin 1 and Hb9 promoters exclusively targeted neurons in vitro, although their strengths were up to 10-fold lower than that of CMV. In vivo analyses of mouse tissue after scAAV9-GFP vector delivery via the cisterna magna revealed a significant advantage of synapsin 1 promoter over both Hb9 variants in targeting neurons throughout the brain, since Hb9 promoters were driving gene expression mainly within the motor-related areas of the brain stem. In summary, this study demonstrates that cisterna magna administration is a safe alternative to intracranial or intracerebroventricular vector delivery route using scAAV9, and introduces a novel utility of the Hb9 promoter for the targeted gene expression for both in vivo and in vitro applications.

12.
Neurobiol Aging ; 36(10): 2893-903, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26344876

ABSTRACT

Mitochondria play a key role in aging, which is a well-established risk factor in amyotrophic lateral sclerosis (ALS). We have previously modeled metabolic dysregulation in ALS using fibroblasts isolated from sporadic ALS (SALS) and familial ALS patients. In the present study, we show that fibroblasts from SALS patients have an altered metabolic response to aging. Control fibroblasts demonstrated increased mitochondrial network complexity and spare respiratory capacity with age which was not seen in the SALS cases. SALS cases displayed an increase in uncoupled mitochondrial respiration, which was not evident in control cases. Unlike SALS cases, controls showed a decrease in glycolysis and an increase in the oxygen consumption rate/extracellular acidification rate ratio, indicating an increased reliance on mitochondrial function. Switching to a more oxidative state by removing glucose with in the culture media resulted in a loss of the mitochondrial interconnectivity and spare respiratory capacity increases observed in controls grown in glucose. Glucose removal also led to an age-independent increase in glycolysis in the SALS cases. This study is, to the best our knowledge, the first to assess the effect of aging on both mitochondrial and glycolytic function simultaneously in intact human fibroblasts and demonstrates that the SALS disease state shifts the cellular metabolic response to aging to a more glycolytic state compared with age-matched control fibroblasts. This work highlights that ALS alters the metabolic equilibrium even in peripheral tissues outside the central nervous system. Elucidating at a molecular level how this occurs and at what stage in the disease process is crucial to understanding why ALS affects cellular energy metabolism and how the disease alters the natural cellular response to aging.


Subject(s)
Aging/metabolism , Aging/pathology , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Fibroblasts/ultrastructure , Mitochondria/metabolism , Mitochondria/pathology , Adult , Aged , Cells, Cultured , Energy Metabolism , Female , Fibroblasts/metabolism , Glycolysis , Humans , Male , Middle Aged , Mitochondria/physiology , Oxygen Consumption
13.
PLoS One ; 9(9): e107918, 2014.
Article in English | MEDLINE | ID: mdl-25268710

ABSTRACT

The SOD1G93A mouse has been used since 1994 for preclinical testing in amyotrophic lateral sclerosis (ALS). Despite recent genetic advances in our understanding of ALS, transgenic mice expressing mutant SOD1 remain the best available, and most widely used, vertebrate model of the disease. We previously described an optimised and rapid approach for preclinical studies in the SOD1G93A mouse. Here we describe improvements to this approach using home cage running wheels to obtain daily measurements of motor function, with minimal intervention. We show that home cage running wheels detect reductions in motor function at a similar time to the rotarod test, and that the data obtained are less variable allowing the use of smaller groups of animals to obtain satisfactory results. This approach refines use of the SOD1G93A model, and reduces the number of animals undergoing procedures of substantial severity, two central principles of the 3Rs (replacement, reduction and refinement of animal use in research). The small group sizes and rapid timescales enable affordable large-scale therapeutic pre-screening in the SOD1G93A mouse, as well as rapid validation of published positive effects in a second laboratory, one of the major stumbling blocks in ALS preclinical therapy development.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnosis , Rotarod Performance Test/instrumentation , Superoxide Dismutase/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/mortality , Amyotrophic Lateral Sclerosis/physiopathology , Animal Welfare/ethics , Animals , Disease Models, Animal , Disease Progression , Early Diagnosis , Female , Male , Mice , Mice, Transgenic , Motor Neurons/metabolism , Motor Neurons/pathology , Mutation , Rotarod Performance Test/methods , Running , Superoxide Dismutase-1 , Survival Analysis
14.
Neurobiol Aging ; 35(6): 1499-509, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24439480

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder involving the progressive degeneration of motor neurons in the brain and spinal cord. Mitochondrial dysfunction plays a key role in ALS disease progression and has been observed in several ALS cellular and animal models. Here, we show that fibroblasts isolated from ALS cases with a Cu/Zn superoxide dismutase (SOD1) I113T mutation recapitulate these mitochondrial defects. Using a novel technique, which measures mitochondrial respiration and glycolytic flux simultaneously in living cells, we have shown that SOD1 mutation causes a reduction in mitochondrial respiration and an increase in glycolytic flux. This causes a reduction in adenosine triphosphate produced by oxidative phosphorylation and an increase in adenosine triphosphate produced by glycolysis. Switching the energy source from glucose to galactose caused uncoupling of mitochondria with increased proton leak in SOD1(I113T) fibroblasts. Assessment of the contribution of fatty acid oxidation to total respiration, suggested that fatty acid oxidation is reduced in SOD1 ALS fibroblasts, an effect which can be mimicked by starving the control cells of glucose. These results highlight the importance of understanding the interplay between the major metabolic pathways, which has the potential to lead to strategies to correct the metabolic dysregulation observed in ALS cases.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Energy Metabolism/genetics , Fibroblasts/metabolism , Glycolysis/genetics , Mutation , Oxidative Phosphorylation , Superoxide Dismutase/genetics , Superoxide Dismutase/physiology , Adenosine Triphosphate/metabolism , Adult , Cells, Cultured , Fibroblasts/enzymology , Fibroblasts/ultrastructure , Humans , Middle Aged , Mitochondria/metabolism , Mitochondria/pathology , Skin/cytology , Superoxide Dismutase-1
15.
PLoS One ; 8(6): e67276, 2013.
Article in English | MEDLINE | ID: mdl-23840650

ABSTRACT

Charcot-Marie-Tooth disease (CMT) represents a group of neurodegenerative disorders typically characterised by demyelination (CMT1) or distal axon degeneration (CMT2) of motor and sensory neurons. The majority of CMT2 cases are caused by mutations in mitofusin 2 (MFN2); an essential gene encoding a protein responsible for fusion of the mitochondrial outer membrane. The mechanism of action of MFN2 mutations is still not fully resolved. To investigate a role for loss of Mfn2 function in disease we investigated an ENU-induced nonsense mutation in zebrafish MFN2 and characterised the phenotype of these fish at the whole organism, pathological, and subcellular level. We show that unlike mice, loss of MFN2 function in zebrafish leads to an adult onset, progressive phenotype with predominant symptoms of motor dysfunction similar to CMT2. Mutant zebrafish show progressive loss of swimming associated with alterations at the neuro-muscular junction. At the cellular level, we provide direct evidence that mitochondrial transport along axons is perturbed in Mfn2 mutant zebrafish, suggesting that this is a key mechanism of disease in CMT. The progressive phenotype and pathology suggest that zebrafish will be useful for further investigating the disease mechanism and potential treatment of axonal forms of CMT. Our findings support the idea that MFN2 mutation status should be investigated in patients presenting with early-onset recessively inherited axonal CMT.


Subject(s)
Axonal Transport/genetics , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/metabolism , Mutation , Zebrafish Proteins/genetics , Zebrafish , Amino Acid Sequence , Animals , Charcot-Marie-Tooth Disease/pathology , Charcot-Marie-Tooth Disease/physiopathology , Disease Models, Animal , GTP Phosphohydrolases , Homozygote , Humans , Mitochondria/metabolism , Motor Activity/genetics , Neurons/metabolism , Zebrafish Proteins/chemistry , Zebrafish Proteins/metabolism
16.
PLoS One ; 8(6): e68256, 2013.
Article in English | MEDLINE | ID: mdl-23840839

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of motor neurons. Substantial evidence implicates oxidative stress and mitochondrial dysfunction as early events in disease progression. Our aim was to ascertain whether mutation of the SOD1 protein increases metabolic functional susceptibility to oxidative stress. Here we used a motor neuron-like cell line (NSC34) stably transfected with various human mutant SOD1 transgenes (G93A, G37R, H48Q) to investigate the impact of oxidative stress on cell viability and metabolic function within intact cells. NSC34 cells expressing mutant SOD1 showed a dose dependent reduction in cell viability when exposed to oxidative stress induced by hydrogen peroxide, with variation between mutations. The G93A transfectants showed greater cell death and LDH release compared to cells transfected with the other SOD1 mutations, and H48Q showed an accelerated decline at later time points. Differences in mitochondrial bioenergetics, including mitochondrial respiration, coupling efficiency and proton leak, were identified between the mutations, consistent with the differences observed in viability. NSC34 cells expressing G93A SOD1 displayed reduced coupled respiration and mitochondrial membrane potential compared to controls. Furthermore, the G93A mutation had significantly increased metabolic susceptibility to oxidative stress, with hydrogen peroxide increasing ROS production, reducing both cellular oxygen consumption and glycolytic flux in the cell. This study highlights bioenergetic defects within a cellular model of ALS and suggests that oxidative stress is not only detrimental to oxygen consumption but also glycolytic flux, which could lead to an energy deficit in the cell.


Subject(s)
Energy Metabolism/genetics , Mutation , Oxidative Stress/genetics , Superoxide Dismutase/genetics , Animals , Cell Death/genetics , Cell Line , Cell Respiration/drug effects , Cell Respiration/genetics , Cell Survival/drug effects , Cell Survival/genetics , Energy Metabolism/drug effects , Glycolysis/drug effects , Glycolysis/genetics , Humans , Hydrogen Peroxide/pharmacology , Mice , Motor Neurons/drug effects , Motor Neurons/metabolism , Oxidative Stress/drug effects , Oxygen Consumption/drug effects , Oxygen Consumption/genetics , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase-1
17.
Free Radic Biol Med ; 61: 438-52, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23608463

ABSTRACT

Compelling evidence indicates that oxidative stress contributes to motor neuron injury in amyotrophic lateral sclerosis (ALS), but antioxidant therapies have not yet achieved therapeutic benefit in the clinic. The nuclear erythroid 2-related-factor 2 (Nrf2) transcription factor is a key regulator of an important neuroprotective response by driving the expression of multiple cytoprotective genes via its interaction with the antioxidant response element (ARE). Dysregulation of the Nrf2-ARE system has been identified in ALS models and human disease. Taking the Nrf2-ARE pathway as an attractive therapeutic target for neuroprotection in ALS, we aimed to identify CNS penetrating, small molecule activators of Nrf2-mediated transcription in a library of 2000 drugs and natural products. Compounds were screened extensively for Nrf2 activation, and antioxidant and neuroprotective properties in vitro. S[+]-Apomorphine, a receptor-inactive enantiomer of the clinically approved dopamine-receptor agonist (R[-]-apomorphine), was identified as a nontoxic Nrf2 activating molecule. In vivo S[+]-apomorphine demonstrated CNS penetrance, Nrf2 induction, and significant attenuation of motor dysfunction in the SOD1(G93A) transgenic mouse model of ALS. S[+]-apomorphine also reduced pathological oxidative stress and improved survival following an oxidative insult in fibroblasts from ALS patients. This molecule emerges as a promising candidate for evaluation as a potential neuroprotective agent in ALS patients in the clinic.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Antioxidant Response Elements/physiology , Apomorphine/pharmacology , Brain/metabolism , NF-E2-Related Factor 2/physiology , Signal Transduction/physiology , Animals , Cells, Cultured , Diterpenes/pharmacology , Fibroblasts/metabolism , Humans , Mice , Oxidative Stress
18.
Hum Mol Genet ; 22(12): 2376-86, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23427147

ABSTRACT

Mutations in the transactive response DNA binding protein-43 (TARDBP/TDP-43) gene, which regulates transcription and splicing, causes a familial form of amyotrophic lateral sclerosis (ALS). Here, we characterize and report the first tardbp mutation in zebrafish, which introduces a premature stop codon (Y220X), eliminating expression of the Tardbp protein. Another TARDBP ortholog, tardbpl, in zebrafish is shown to encode a Tardbp-like protein which is truncated compared with Tardbp itself and lacks part of the C-terminal glycine-rich domain (GRD). Here, we show that tardbp mutation leads to the generation of a novel tardbpl splice form (tardbpl-FL) capable of making a full-length Tardbp protein (Tardbpl-FL), which compensates for the loss of Tardbp. This finding provides a novel in vivo model to study TDP-43-mediated splicing regulation. Additionally, we show that elimination of both zebrafish TARDBP orthologs results in a severe motor phenotype with shortened motor axons, locomotion defects and death at around 10 days post fertilization. The Tardbp/Tardbpl knockout model generated in this study provides an excellent in vivo system to study the role of the functional loss of Tardbp and its involvement in ALS pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Axons/metabolism , DNA-Binding Proteins/genetics , Motor Neurons/metabolism , RNA Splicing , Zebrafish Proteins/genetics , Zebrafish/metabolism , Amyotrophic Lateral Sclerosis/embryology , Amyotrophic Lateral Sclerosis/metabolism , Animals , DNA-Binding Proteins/metabolism , Disease Models, Animal , Female , Gene Knockout Techniques , Humans , Male , Mutation , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/metabolism
19.
PLoS One ; 8(1): e54636, 2013.
Article in English | MEDLINE | ID: mdl-23355886

ABSTRACT

A KIF6 variant in man has been reported to be associated with adverse cardiovascular outcomes after myocardial infarction. No clear biological or physiological data exist for Kif6. We sought to investigate the impact of a deleterious KIF6 mutation on cardiac function in mice. Kif6 mutant mice were generated and verified. Cardiac function was assessed by serial echocardiography at baseline, after ageing and after exercise. Lipid levels were also measured. No discernable adverse lipid or cardiac phenotype was detected in Kif6 mutant mice. These data suggest that dysfunction of Kif6 is linked to other more complex biological/biochemical parameters or is unlikely to be of material consequence in cardiac function.


Subject(s)
Heart/physiopathology , Kinesins/metabolism , Lipids/blood , Mutation , Myocardial Infarction , Animals , Echocardiography , Humans , Kinesins/genetics , Mice , Mice, Mutant Strains , Myocardial Infarction/blood , Myocardial Infarction/genetics , Myocardial Infarction/physiopathology
20.
PLoS One ; 7(7): e41634, 2012.
Article in English | MEDLINE | ID: mdl-22911832

ABSTRACT

The authors have used an online community approach, and tools that were readily available via the Internet, to discover genealogically and therefore phylogenetically relevant Y-chromosome polymorphisms within core haplogroup R1b1a2-L11/S127 (rs9786076). Presented here is the analysis of 135 unrelated L11 derived samples from the 1000 Genomes Project. We were able to discover new variants and build a much more complex phylogenetic relationship for L11 sub-clades. Many of the variants were further validated using PCR amplification and Sanger sequencing. The identification of these new variants will help further the understanding of population history including patrilineal migrations in Western and Central Europe where R1b1a2 is the most frequent haplogroup. The fine-grained phylogenetic tree we present here will also help to refine historical genetic dating studies. Our findings demonstrate the power of citizen science for analysis of whole genome sequence data.


Subject(s)
Chromosomes, Human, Y/genetics , Databases, Genetic , Genetic Variation , Genome, Human/genetics , Haplotypes/genetics , Human Genome Project , Online Systems , Europe , Humans , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...