Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 10(1): 2909, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31266957

ABSTRACT

Cells form and use biomolecular condensates to execute biochemical reactions. The molecular properties of non-membrane-bound condensates are directly connected to the amino acid content of disordered protein regions. Lysine plays an important role in cellular function, but little is known about its role in biomolecular condensation. Here we show that protein disorder is abundant in protein/RNA granules and lysine is enriched in disordered regions of proteins in P-bodies compared to the entire human disordered proteome. Lysine-rich polypeptides phase separate into lysine/RNA-coacervates that are more dynamic and differ at the molecular level from arginine/RNA-coacervates. Consistent with the ability of lysine to drive phase separation, lysine-rich variants of the Alzheimer's disease-linked protein tau undergo coacervation with RNA in vitro and bind to stress granules in cells. Acetylation of lysine reverses liquid-liquid phase separation and reduces colocalization of tau with stress granules. Our study establishes lysine as an important regulator of cellular condensation.


Subject(s)
Lysine/metabolism , RNA/chemistry , RNA/metabolism , tau Proteins/chemistry , tau Proteins/metabolism , Acetylation , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Cell Line , Cytoplasmic Granules/genetics , Cytoplasmic Granules/metabolism , Humans , Lysine/chemistry , Lysine/genetics , RNA/genetics , tau Proteins/genetics
2.
Science ; 358(6370): 1617-1622, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29192133

ABSTRACT

The release of paused RNA polymerase II into productive elongation is highly regulated, especially at genes that affect human development and disease. To exert control over this rate-limiting step, we designed sequence-specific synthetic transcription elongation factors (Syn-TEFs). These molecules are composed of programmable DNA-binding ligands flexibly tethered to a small molecule that engages the transcription elongation machinery. By limiting activity to targeted loci, Syn-TEFs convert constituent modules from broad-spectrum inhibitors of transcription into gene-specific stimulators. Here we present Syn-TEF1, a molecule that actively enables transcription across repressive GAA repeats that silence frataxin expression in Friedreich's ataxia, a terminal neurodegenerative disease with no effective therapy. The modular design of Syn-TEF1 defines a general framework for developing a class of molecules that license transcription elongation at targeted genomic loci.


Subject(s)
Chromatin/metabolism , Friedreich Ataxia/genetics , Iron-Binding Proteins/genetics , Transcriptional Activation , Transcriptional Elongation Factors/chemical synthesis , Transcriptional Elongation Factors/metabolism , Gene Silencing , Humans , RNA Polymerase II/metabolism , Transcription, Genetic , Frataxin
3.
Proc Natl Acad Sci U S A ; 113(47): E7418-E7427, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27830652

ABSTRACT

Targeting the genome with sequence-specific DNA-binding molecules is a major goal at the interface of chemistry, biology, and precision medicine. Polyamides, composed of N-methylpyrrole and N-methylimidazole monomers, are a class of synthetic molecules that can be rationally designed to "read" specific DNA sequences. However, the impact of different chromatin states on polyamide binding in live cells remains an unresolved question that impedes their deployment in vivo. Here, we use cross-linking of small molecules to isolate chromatin coupled to sequencing to map the binding of two bioactive and structurally distinct polyamides to genomes directly within live H1 human embryonic stem cells. This genome-wide view from live cells reveals that polyamide-based synthetic genome readers bind cognate sites that span a range of binding affinities. Polyamides can access cognate sites within repressive heterochromatin. The occupancy patterns suggest that polyamides could be harnessed to target loci within regions of the genome that are inaccessible to other DNA-targeting molecules.


Subject(s)
Chromatin/genetics , DNA/chemistry , Nylons/metabolism , Sequence Analysis, DNA/methods , Binding Sites , Cell Line , Chromatin/chemistry , Cross-Linking Reagents , DNA/metabolism , Genome, Human , Human Embryonic Stem Cells/cytology , Humans , Small Molecule Libraries/chemistry
4.
J Vis Exp ; (107): e53510, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26863565

ABSTRACT

The genome is the target of some of the most effective chemotherapeutics, but most of these drugs lack DNA sequence specificity, which leads to dose-limiting toxicity and many adverse side effects. Targeting the genome with sequence-specific small molecules may enable molecules with increased therapeutic index and fewer off-target effects. N-methylpyrrole/N-methylimidazole polyamides are molecules that can be rationally designed to target specific DNA sequences with exquisite precision. And unlike most natural transcription factors, polyamides can bind to methylated and chromatinized DNA without a loss in affinity. The sequence specificity of polyamides has been extensively studied in vitro with cognate site identification (CSI) and with traditional biochemical and biophysical approaches, but the study of polyamide binding to genomic targets in cells remains elusive. Here we report a method, the crosslinking of small molecules to isolate chromatin (COSMIC), that identifies polyamide binding sites across the genome. COSMIC is similar to chromatin immunoprecipitation (ChIP), but differs in two important ways: (1) a photocrosslinker is employed to enable selective, temporally-controlled capture of polyamide binding events, and (2) the biotin affinity handle is used to purify polyamide-DNA conjugates under semi-denaturing conditions to decrease DNA that is non-covalently bound. COSMIC is a general strategy that can be used to reveal the genome-wide binding events of polyamides and other genome-targeting chemotherapeutic agents.


Subject(s)
Chromatin/isolation & purification , DNA/chemistry , Genome-Wide Association Study/methods , Nylons/chemistry , Binding Sites , Chromatin/chemistry , DNA/genetics , DNA/metabolism , Humans , Imidazoles/chemistry , Nylons/metabolism , Pyrroles/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...