Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38456596

ABSTRACT

Most cells tightly control the length of their cilia. The regulation likely involves intraflagellar transport (IFT), a bidirectional motility of multi-subunit particles organized into trains that deliver building blocks into the organelle. In Chlamydomonas, the anterograde IFT motor kinesin-2 consists of the motor subunits FLA8 and FLA10 and the nonmotor subunit KAP. KAP dissociates from IFT at the ciliary tip and diffuses back to the cell body. This observation led to the diffusion-as-a-ruler model of ciliary length control, which postulates that KAP is progressively sequestered into elongating cilia because its return to the cell body will require increasingly more time, limiting motor availability at the ciliary base, train assembly, building block supply, and ciliary growth. Here, we show that Chlamydomonas FLA8 also returns to the cell body by diffusion. However, more than 95% of KAP and FLA8 are present in the cell body and, at a given time, just ~1% of the motor participates in IFT. After repeated photobleaching of both cilia, IFT of fluorescent kinesin subunits continued indicating that kinesin-2 cycles from the large cell-body pool through the cilia and back. Furthermore, growing and full-length cilia contained similar amounts of kinesin-2 subunits and the size of the motor pool at the base changed only slightly with ciliary length. These observations are incompatible with the diffusion-as-a-ruler model, but rather support an "on-demand model," in which the cargo load of the trains is regulated to assemble cilia of the desired length.

2.
J Am Chem Soc ; 145(37): 20158-20162, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37683290

ABSTRACT

We report the electron transfer (ET) self-exchange rate constants (k11) for a pair of CuII/I complexes utilizing dpaR (dpa = dipicolylaniline, R = OMe, SMe) ligands assessed by NMR line broadening experiments. These ligands afford copper complexes that are conformationally dynamic in one oxidation state. With R = OMe, the CuI complex is dynamic, while with R = SMe, the CuII complex is dynamic. Both complexes exhibit unexpectedly large k11 values of 2.48(6) × 105 and 2.21(9) × 106 M-1 s-1 for [CuCl(dpaOMe)]+/0 and [CuCl(dpaSMe)]+/0, respectively. Among the fastest reported molecular copper coordination complexes to date, that of [CuCl(dpaSMe)]+/0 exceeds all others by an order of magnitude and compares only with those observed in type 1 blue copper proteins. The dynamicity of these complexes establishes pre-steady-state conformational equilibria that minimize the inner-sphere reorganization energies to 0.71 and 0.62 eV for R = OMe and SMe, respectively. In contrast to the emphasis on rigidity in the formulation of entatic states applied to blue copper proteins, the success of these two systems highlights the relevance of conformational dynamicity in mediating rapid ET.

3.
Dalton Trans ; 52(24): 8376-8383, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37264802

ABSTRACT

The geometries of copper coordination complexes are intricately related to their electron transfer capabilities, but the role of dynamics in these processes are not fully understood. We have previously reported CuCl(dpaOMe), a complex exhibiting conformational fluxionality in its CuI state and rigidity upon oxidation to CuII. Here, we report the synthesis and characterization of [CuCl(dpaSMe)]+/0, a complex exhibiting relative rigidity in its CuI state and structural dynamics upon oxidation to CuII. The dynamics of [CuCl(dpaSMe)]+ were characterized via X-ray diffraction, cyclic voltammetry, and EPR spectroscopy, where temperature-dependent interconversion between trigonal bipyramidal and square pyramidal geometries is observed. Coupling these solid and solution-state characterization data enabled assignment of the coordination geometries involved. Factors impacting these dynamics and their potential implications for electron transfer are discussed.

4.
J Am Chem Soc ; 144(27): 12116-12126, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35762527

ABSTRACT

The continued development of solar energy as a renewable resource necessitates new approaches to sustaining photodriven charge separation (CS). We present a bioinspired approach in which photoinduced conformational rearrangements at a ligand are translated into changes in coordination geometry and environment about a bound metal ion. Taking advantage of the differential coordination properties of CuI and CuII, these dynamics aim to facilitate intramolecular electron transfer (ET) from CuI to the ligand to create a CS state. The synthesis and photophysical characterization of CuCl(dpaaR) (dpaa = dipicolylaminoacetophenone, with R = H and OMe) are presented. These ligands incorporate a fluorophore that gives rise to a twisted intramolecular charge transfer (TICT) excited state. Excited-state ligand twisting provides a tetragonal coordination geometry capable of capturing CuII when an internal ortho-OMe binding site is present. NMR, IR, electron paramagnetic resonance (EPR), and optical spectroscopies, X-ray diffraction, and electrochemical methods establish the ground-state properties of these CuI and CuII complexes. The photophysical dynamics of the CuI complexes are explored by time-resolved photoluminescence and optical transient absorption spectroscopies. Relative to control complexes lacking a TICT-active ligand, the lifetimes of CS states are enhanced ∼1000-fold. Further, the presence of the ortho-OMe substituent greatly enhances the lifetime of the TICT* state and biases the coordination environment toward CuII. The presence of CuI decreases photoinduced degradation from 14 to <2% but does not result in significant quenching via ET. Factors affecting CS in these systems are discussed, laying the groundwork for our strategy toward solar energy conversion.


Subject(s)
Coordination Complexes , Coordination Complexes/chemistry , Copper/chemistry , Electron Spin Resonance Spectroscopy , Ligands , Molecular Conformation
5.
Dalton Trans ; 51(16): 6212-6219, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35357384

ABSTRACT

The interplay between oxidation state and coordination geometry dictates both kinetic and thermodynamic properties underlying electron transfer events in copper coordination complexes. An ability to stabilize both CuI and CuII oxidation states in a single conformationally dynamic chelating ligand allows access to controlled redox reactivity. We report an analysis of the conformational dynamics of CuI complexes bearing dipicolylaniline (dpaR) ligands, with ortho-aniline substituents R = H and R = OMe. Variable temperature NMR spectroscopy and electrochemical experiments suggest that in solution at room temperature, an equilibrium exists between two conformers. Two metal-centered redox events are observed which, bolstered by structural information from single crystal X-ray diffraction and solution information from EPR and NMR spectroscopies, are ascribed to the CuII/I couple in planar and tetrahedral conformations. Activation and equilibrium parameters for these structural interconversions are presented and provide entry to leveraging redox-triggered conformational dynamics at Cu.

SELECTION OF CITATIONS
SEARCH DETAIL
...