Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Alzheimers Dement ; 20(4): 3099-3107, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460119

ABSTRACT

Dementia research lacks appropriate representation of diverse groups who often face substantial adversity and greater risk of dementia. Current research participants are primarily well-resourced, non-Hispanic White, cisgender adults who live close to academic medical centers where much of the research is based. Consequently, the field faces a knowledge gap about Alzheimer's-related risk factors in those other groups. The Alzheimer's Association hosted a virtual conference on June 14-16, 2021, supported in part by the National Institute on Aging (R13 AG072859-01), focused on health disparities. The conference was held entirely online and consisted of 2 days of core programming and a day of focused meetings centered on American Indian and Alaska Natives and on LGBTQIA+ populations. Over 1300 registrants attended discussions focused on the structural and systemic inequities experienced across diverse groups, as well as ways to investigate and address these inequities.


Subject(s)
Alaska Natives , Alzheimer Disease , Adult , Humans , United States/epidemiology , Risk Factors , Health Inequities , Healthcare Disparities
2.
Alzheimers Dement ; 19 Suppl 9: S74-S88, 2023 11.
Article in English | MEDLINE | ID: mdl-37850549

ABSTRACT

INTRODUCTION: Magnetic resonance imaging (MRI) research has advanced our understanding of neurodegeneration in sporadic early-onset Alzheimer's disease (EOAD) but studies include small samples, mostly amnestic EOAD, and have not focused on developing an MRI biomarker. METHODS: We analyzed MRI scans to define the sporadic EOAD-signature atrophy in a small sample (n = 25) of Massachusetts General Hospital (MGH) EOAD patients, investigated its reproducibility in the large longitudinal early-onset Alzheimer's disease study (LEADS) sample (n = 211), and investigated the relationship of the magnitude of atrophy with cognitive impairment. RESULTS: The EOAD-signature atrophy was replicated across the two cohorts, with prominent atrophy in the caudal lateral temporal cortex, inferior parietal lobule, and posterior cingulate and precuneus cortices, and with relative sparing of the medial temporal lobe. The magnitude of EOAD-signature atrophy was associated with the severity of cognitive impairment. DISCUSSION: The EOAD-signature atrophy is a reliable and clinically valid biomarker of AD-related neurodegeneration that could be used in clinical trials for EOAD. HIGHLIGHTS: We developed an early-onset Alzheimer's disease (EOAD)-signature of atrophy based on magnetic resonance imaging (MRI) scans. EOAD signature was robustly reproducible across two independent patient cohorts. EOAD signature included prominent atrophy in parietal and posterior temporal cortex. The EOAD-signature atrophy was associated with the severity of cognitive impairment. EOAD signature is a reliable and clinically valid biomarker of neurodegeneration.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Reproducibility of Results , Temporal Lobe/pathology , Magnetic Resonance Imaging/methods , Atrophy/pathology , Biomarkers
3.
Alzheimers Dement ; 19 Suppl 9: S89-S97, 2023 11.
Article in English | MEDLINE | ID: mdl-37491599

ABSTRACT

INTRODUCTION: We compared white matter hyperintensities (WMHs) in early-onset Alzheimer's disease (EOAD) with cognitively normal (CN) and early-onset amyloid-negative cognitively impaired (EOnonAD) groups in the Longitudinal Early-Onset Alzheimer's Disease Study. METHODS: We investigated the role of increased WMH in cognition and amyloid and tau burden. We compared WMH burden of 205 EOAD, 68 EOnonAD, and 89 CN participants in lobar regions using t-tests and analyses of covariance. Linear regression analyses were used to investigate the association between WMH and cognitive impairment and that between amyloid and tau burden. RESULTS: EOAD showed greater WMHs compared with CN and EOnonAD participants across all regions with no significant differences between CN and EOnonAD groups. Greater WMHs were associated with worse cognition. Tau burden was positively associated with WMH burden in the EOAD group. DISCUSSION: EOAD consistently showed higher WMH volumes. Overall, greater WMHs were associated with worse cognition and higher tau burden in EOAD. HIGHLIGHTS: This study represents a comprehensive characterization of WMHs in sporadic EOAD. WMH volumes are associated with tau burden from positron emission tomography (PET) in EOAD, suggesting WMHs are correlated with increasing burden of AD. Greater WMH volumes are associated with worse performance on global cognitive tests. EOAD participants have higher WMH volumes compared with CN and early-onset amyloid-negative cognitively impaired (EOnonAD) groups across all brain regions.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , White Matter , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/complications , White Matter/diagnostic imaging , White Matter/metabolism , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Magnetic Resonance Imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/complications , Amyloidogenic Proteins , Amyloid
4.
Alzheimers Dement ; 19 Suppl 9: S115-S125, 2023 11.
Article in English | MEDLINE | ID: mdl-37491668

ABSTRACT

INTRODUCTION: One goal of the Longitudinal Early Onset Alzheimer's Disease Study (LEADS) is to define the fluid biomarker characteristics of early-onset Alzheimer's disease (EOAD). METHODS: Cerebrospinal fluid (CSF) concentrations of Aß1-40, Aß1-42, total tau (tTau), pTau181, VILIP-1, SNAP-25, neurogranin (Ng), neurofilament light chain (NfL), and YKL-40 were measured by immunoassay in 165 LEADS participants. The associations of biomarker concentrations with diagnostic group and standard cognitive tests were evaluated. RESULTS: Biomarkers were correlated with one another. Levels of CSF Aß42/40, pTau181, tTau, SNAP-25, and Ng in EOAD differed significantly from cognitively normal and early-onset non-AD dementia; NfL, YKL-40, and VILIP-1 did not. Across groups, all biomarkers except SNAP-25 were correlated with cognition. Within the EOAD group, Aß42/40, NfL, Ng, and SNAP-25 were correlated with at least one cognitive measure. DISCUSSION: This study provides a comprehensive analysis of CSF biomarkers in sporadic EOAD that can inform EOAD clinical trial design.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Chitinase-3-Like Protein 1 , Amyloid beta-Peptides/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Longitudinal Studies , Biomarkers/cerebrospinal fluid , Neurogranin/cerebrospinal fluid
5.
Alzheimers Dement ; 19 Suppl 9: S42-S48, 2023 11.
Article in English | MEDLINE | ID: mdl-37296082

ABSTRACT

INTRODUCTION: We examined neuropsychiatric symptoms (NPS) and psychotropic medication use in a large sample of individuals with early-onset Alzheimer's disease (EOAD; onset 40-64 years) at the midway point of data collection for the Longitudinal Early-onset Alzheimer's Disease Study (LEADS). METHODS: Baseline NPS (Neuropsychiatric Inventory - Questionnaire; Geriatric Depression Scale) and psychotropic medication use from 282 participants enrolled in LEADS were compared across diagnostic groups - amyloid-positive EOAD (n = 212) and amyloid negative early-onset non-Alzheimer's disease (EOnonAD; n = 70). RESULTS: Affective behaviors were the most common NPS in EOAD at similar frequencies to EOnonAD. Tension and impulse control behaviors were more common in EOnonAD. A minority of participants were using psychotropic medications, and use was higher in EOnonAD. DISCUSSION: Overall NPS burden and psychotropic medication use were higher in EOnonAD than EOAD participants. Future research will investigate moderators and etiological drivers of NPS, and NPS differences in EOAD versus late-onset AD.


Subject(s)
Alzheimer Disease , Humans , Aged , Alzheimer Disease/drug therapy , Alzheimer Disease/psychology , Longitudinal Studies , Data Collection
6.
Alzheimers Dement ; 19 Suppl 9: S126-S131, 2023 11.
Article in English | MEDLINE | ID: mdl-37390354

ABSTRACT

On September 25 and 26, 2021, the Alzheimer's Association hosted the first meeting focused on people with early-onset Alzheimer's disease (EOAD)-sometimes referred to as younger onset Alzheimer's disease (AD). Though a diagnosis of AD can be devastating at any age, those with a younger onset-defined as symptoms developing prior to 65 years of age-face unique challenges. EOAD occurs when people are in the prime of their lives, often with multiple responsibilities including careers, community activities, and raising children and caring for older family members. These challenges warrant special consideration and study, yet people with EOAD are often excluded from AD research because of their atypical age of onset. To help fill this gap, we designed and launched the Longitudinal Early-Onset Alzheimer's Disease Study (LEADS) to enroll and follow 500 people with EOAD from > 15 sites in the United States, which the National Institute on Aging funded in 2018. The September 2021 meeting was designed to inform people with EOAD and their family members and caregivers about the latest research on the biology of EOAD, treatments in the pipeline, practical considerations about legal and financial arrangements for families, and the support networks available to them. More than 217 registrants attended.


Subject(s)
Alzheimer Disease , Child , Humans , Age of Onset , Longitudinal Studies
7.
Alzheimers Dement ; 19 Suppl 9: S8-S18, 2023 11.
Article in English | MEDLINE | ID: mdl-37256497

ABSTRACT

OBJECTIVE: The Longitudinal Early-Onset Alzheimer's Disease Study (LEADS) seeks to provide comprehensive understanding of early-onset Alzheimer's disease (EOAD; onset <65 years), with the current study profiling baseline clinical, cognitive, biomarker, and genetic characteristics of the cohort nearing the data-collection mid-point. METHODS: Data from 371 LEADS participants were compared based on diagnostic group classification (cognitively normal [n = 89], amyloid-positive EOAD [n = 212], and amyloid-negative early-onset non-Alzheimer's disease [EOnonAD; n = 70]). RESULTS: Cognitive performance was worse for EOAD than other groups, and EOAD participants were apolipoprotein E (APOE) ε4 homozygotes at higher rates. An amnestic presentation was common among impaired participants (81%), with several clinical phenotypes present. LEADS participants generally consented at high rates to optional trial procedures. CONCLUSIONS: We present the most comprehensive baseline characterization of sporadic EOAD in the United States to date. EOAD presents with widespread cognitive impairment within and across clinical phenotypes, with differences in APOE ε4 allele carrier status appearing to be relevant. HIGHLIGHTS: Findings represent the most comprehensive baseline characterization of sporadic early-onset Alzheimer's disease (EOAD) to date. Cognitive impairment was widespread for EOAD participants and more severe than other groups. EOAD participants were homozygous apolipoprotein E (APOE) ε4 carriers at higher rates than the EOnonAD group. Amnestic presentation predominated in EOAD and EOnonAD participants, but other clinical phenotypes were present.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Alzheimer Disease/psychology , Apolipoproteins E/genetics , Longitudinal Studies , Apolipoprotein E4/genetics , Data Collection
8.
Alzheimers Dement ; 19(9): 4204-4225, 2023 09.
Article in English | MEDLINE | ID: mdl-37218539

ABSTRACT

INTRODUCTION: Individuals living in rural communities are at heightened risk for Alzheimer's disease and related dementias (ADRD), which parallels other persistent place-based health disparities. Identifying multiple potentially modifiable risk factors specific to rural areas that contribute to ADRD is an essential first step in understanding the complex interplay between various barriers and facilitators. METHODS: An interdisciplinary, international group of ADRD researchers convened to address the overarching question of: "What can be done to begin minimizing the rural health disparities that contribute uniquely to ADRD?" In this state of the science appraisal, we explore what is known about the biological, behavioral, sociocultural, and environmental influences on ADRD disparities in rural settings. RESULTS: A range of individual, interpersonal, and community factors were identified, including strengths of rural residents in facilitating healthy aging lifestyle interventions. DISCUSSION: A location dynamics model and ADRD-focused future directions are offered for guiding rural practitioners, researchers, and policymakers in mitigating rural disparities. HIGHLIGHTS: Rural residents face heightened Alzheimer's disease and related dementia (ADRD) risks and burdens due to health disparities. Defining the unique rural barriers and facilitators to cognitive health yields insight. The strengths and resilience of rural residents can mitigate ADRD-related challenges. A novel "location dynamics" model guides assessment of rural-specific ADRD issues.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/epidemiology , Rural Population , Rural Health , Risk Factors
9.
Elife ; 92020 12 01.
Article in English | MEDLINE | ID: mdl-33258449

ABSTRACT

The circadian clock regulates various aspects of brain health including microglial and astrocyte activation. Here, we report that deletion of the master clock protein BMAL1 in mice robustly increases expression of complement genes, including C4b and C3, in the hippocampus. BMAL1 regulates expression of the transcriptional repressor REV-ERBα, and deletion of REV-ERBα causes increased expression of C4b transcript in neurons and astrocytes as well as C3 protein primarily in astrocytes. REV-ERBα deletion increased microglial phagocytosis of synapses and synapse loss in the CA3 region of the hippocampus. Finally, we observed diurnal variation in the degree of microglial synaptic phagocytosis which was antiphase to REV-ERBα expression. This daily variation in microglial synaptic phagocytosis was abrogated by global REV-ERBα deletion, which caused persistently elevated synaptic phagocytosis. This work uncovers the BMAL1-REV-ERBα axis as a regulator of complement expression and synaptic phagocytosis in the brain, linking circadian proteins to synaptic regulation.


Subject(s)
CA3 Region, Hippocampal/metabolism , Circadian Rhythm , Complement System Proteins/metabolism , Microglia/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Phagocytosis , Synapses/metabolism , ARNTL Transcription Factors/deficiency , ARNTL Transcription Factors/genetics , Animals , CA3 Region, Hippocampal/cytology , Cells, Cultured , Complement C3/genetics , Complement C3/metabolism , Complement C4/genetics , Complement C4/metabolism , Complement System Proteins/genetics , Female , Male , Mice, Inbred C57BL , Mice, Knockout , Nuclear Receptor Subfamily 1, Group D, Member 1/deficiency , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Signal Transduction , Time Factors , Up-Regulation
10.
Aging Cell ; 19(2): e13078, 2020 02.
Article in English | MEDLINE | ID: mdl-31800167

ABSTRACT

A promising new therapeutic target for the treatment of Alzheimer's disease (AD) is the circadian system. Although patients with AD are known to have abnormal circadian rhythms and suffer sleep disturbances, the role of the molecular clock in regulating amyloid-beta (Aß) pathology is still poorly understood. Here, we explored how the circadian repressors REV-ERBα and ß affected Aß clearance in mouse microglia. We discovered that, at Circadian time 4 (CT4), microglia expressed higher levels of the master clock protein BMAL1 and more rapidly phagocytosed fibrillary Aß1-42 (fAß1-42 ) than at CT12. BMAL1 directly drives transcription of REV-ERB proteins, which are implicated in microglial activation. Interestingly, pharmacological inhibition of REV-ERBs with the small molecule antagonist SR8278 or genetic knockdown of REV-ERBs-accelerated microglial uptake of fAß1-42 and increased transcription of BMAL1. SR8278 also promoted microglia polarization toward a phagocytic M2-like phenotype with increased P2Y12 receptor expression. Finally, constitutive deletion of Rev-erbα in the 5XFAD model of AD decreased amyloid plaque number and size and prevented plaque-associated increases in disease-associated microglia markers including TREM2, CD45, and Clec7a. Altogether, our work suggests a novel strategy for controlling Aß clearance and neuroinflammation by targeting REV-ERBs and provides new insights into the role of REV-ERBs in AD.


Subject(s)
Amyloid beta-Peptides/metabolism , Circadian Clocks/genetics , Microglia/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Plaque, Amyloid/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Repressor Proteins/metabolism , ARNTL Transcription Factors/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/chemical synthesis , Animals , CLOCK Proteins/metabolism , Cell Line , Disease Models, Animal , Isoquinolines/pharmacology , Macrophages/metabolism , Mice , Mice, Knockout , Nuclear Receptor Subfamily 1, Group D, Member 1/antagonists & inhibitors , Plaque, Amyloid/genetics , Plaque, Amyloid/pathology , RNA, Small Interfering , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Purinergic P2Y12/drug effects , Receptors, Purinergic P2Y12/metabolism , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/genetics , Synapses/genetics , Synapses/metabolism , Thiophenes/pharmacology
11.
J Exp Neurosci ; 13: 1179069519853233, 2019.
Article in English | MEDLINE | ID: mdl-31210735

ABSTRACT

Recently, we described a role for the circadian clock protein and nuclear receptor Rev-erbα in regulating glial activation states in the brain. Deletion of Rev-erbα resulted in microglial as well as astrocytic activation, while a Rev-erbα agonist diminished the severity of lipopolysaccharide (LPS)-induced neuroinflammation. Concomitant with this glial activation is impaired neuronal health. These findings suggest that Rev-erb proteins may play critical roles in glial biology. Pertinent ideas such as the glial cell type of most importance, the translatability of these findings to human disease, and the effect of manipulating Rev-erbs in models of neurodegeneration, need to be explored further. In this commentary, we will address the potential role of Rev-erbs in neuroinflammation related to neurodegenerative diseases and speculate on Rev-erbs as potential therapeutic targets for these conditions.

12.
Proc Natl Acad Sci U S A ; 116(11): 5102-5107, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30792350

ABSTRACT

Circadian dysfunction is a common attribute of many neurodegenerative diseases, most of which are associated with neuroinflammation. Circadian rhythm dysfunction has been associated with inflammation in the periphery, but the role of the core clock in neuroinflammation remains poorly understood. Here we demonstrate that Rev-erbα, a nuclear receptor and circadian clock component, is a mediator of microglial activation and neuroinflammation. We observed time-of-day oscillation in microglial immunoreactivity in the hippocampus, which was disrupted in Rev-erbα-/- mice. Rev-erbα deletion caused spontaneous microglial activation in the hippocampus and increased expression of proinflammatory transcripts, as well as secondary astrogliosis. Transcriptomic analysis of hippocampus from Rev-erbα-/- mice revealed a predominant inflammatory phenotype and suggested dysregulated NF-κB signaling. Primary Rev-erbα-/- microglia exhibited proinflammatory phenotypes and increased basal NF-κB activation. Chromatin immunoprecipitation revealed that Rev-erbα physically interacts with the promoter regions of several NF-κB-related genes in primary microglia. Loss of Rev-erbα in primary astrocytes had no effect on basal activation but did potentiate the inflammatory response to lipopolysaccharide (LPS). In vivo, Rev-erbα-/- mice exhibited enhanced hippocampal neuroinflammatory responses to peripheral LPS injection, while pharmacologic activation of Rev-erbs with the small molecule agonist SR9009 suppressed LPS-induced hippocampal neuroinflammation. Rev-erbα deletion influenced neuronal health, as conditioned media from Rev-erbα-deficient primary glial cultures exacerbated oxidative damage in cultured neurons. Rev-erbα-/- mice also exhibited significantly altered cortical resting-state functional connectivity, similar to that observed in neurodegenerative models. Our results reveal Rev-erbα as a pharmacologically accessible link between the circadian clock and neuroinflammation.


Subject(s)
Circadian Clocks , Inflammation/metabolism , Inflammation/pathology , Neurons/metabolism , Neurons/pathology , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Animals , Astrocytes/metabolism , Astrocytes/pathology , Cell Death , Gene Deletion , Gliosis/pathology , Hippocampus/pathology , Lipopolysaccharides , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Microglia/pathology , NF-kappa B/metabolism , Nerve Net/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/deficiency , Signal Transduction
13.
Cell Rep ; 25(1): 1-9.e5, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30282019

ABSTRACT

Circadian clock dysfunction is a common symptom of aging and neurodegenerative diseases, though its impact on brain health is poorly understood. Astrocyte activation occurs in response to diverse insults and plays a critical role in brain health and disease. We report that the core circadian clock protein BMAL1 regulates astrogliosis in a synergistic manner via a cell-autonomous mechanism and a lesser non-cell-autonomous signal from neurons. Astrocyte-specific Bmal1 deletion induces astrocyte activation and inflammatory gene expression in vitro and in vivo, mediated in part by suppression of glutathione-S-transferase signaling. Functionally, loss of Bmal1 in astrocytes promotes neuronal death in vitro. Our results demonstrate that the core clock protein BMAL1 regulates astrocyte activation and function in vivo, elucidating a mechanism by which the circadian clock could influence many aspects of brain function and neurological disease.


Subject(s)
Astrocytes/metabolism , Circadian Clocks/physiology , ARNTL Transcription Factors , Animals , Astrocytes/cytology , Cell Death/physiology , Circadian Clocks/genetics , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Primary Cell Culture , Transfection
14.
J Vis Exp ; (99): e52784, 2015 May 10.
Article in English | MEDLINE | ID: mdl-25993605

ABSTRACT

The ubiquitin-proteasome system has recently been implicated in various pathologies including neurodegenerative diseases and cancer. In light of this, techniques for studying the regulatory mechanism of this system are essential to elucidating the cellular and molecular processes of the aforementioned diseases. The use of hemagglutinin derived ubiquitin probes outlined in this paper serves as a valuable tool for the study of this system. This paper details a method that enables the user to perform assays that give a direct visualization of deubiquitinating enzyme activity. Deubiquitinating enzymes control proteasomal degradation and share functional homology at their active sites, which allows the user to investigate the activity of multiple enzymes in one assay. Lysates are obtained through gentle mechanical cell disruption and incubated with active site directed probes. Functional enzymes are tagged with the probes while inactive enzymes remain unbound. By running this assay, the user obtains information on both the activity and potential expression of multiple deubiquitinating enzymes in a fast and easy manner. The current method is significantly more efficient than using individual antibodies for the predicted one hundred deubiquitinating enzymes in the human cell.


Subject(s)
Ubiquitin-Specific Proteases/analysis , Ubiquitin-Specific Proteases/metabolism , Ubiquitin/metabolism , Cell Line, Tumor , HeLa Cells , Humans , Protein Processing, Post-Translational , Ubiquitin/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...