Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Environ Technol ; : 1-14, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38379449

ABSTRACT

Ammonia (NH3) and greenhouse gas (GHG) emissions are substantial contributors to C and N loss in composting. Lignite can increase N retention by absorbing NH4+ and NH3. However, the effects of co-composting on NH3 and GHG emissions in view of closing nutrient cycle are still poorly investigated. In the study, poultry litter was composted without (CK) or with lignite (T1) or dewatered lignite (T2), and their respective composts NH4+Com_CK, Com_T1, and Com_T2) were tested in a soil incubation to assess NH3 and GHG emission during composting and following soil utilization. The cumulative NH3 flux in T1 and T2 were reduced by 39.3% and 50.2%, while N2O emissions were increased by 7.5 and 15.6 times, relative to CK. The total GHG emission in T2 was reduced by 16.8% compared to CK. Lignite addition significantly increased nitrification and denitrification as evidenced by the increased abundances of amoA, amoB, nirK, and nirS. The increased reduction on NH3 emission by dewatered lignite could be attributed to reduced pH and enhanced cation exchangeable capacity than lignite. The increased N2O was related to enhanced nitrification and denitrification. In the soil incubation experiment, compost addition reduced NH3 emission by 72%∼83% while increased emissions of CO2 and N2O by 306%∼740% and 208%∼454%, compared with urea. Com_T2 strongly reduced NH3 and GHG emissions after soil amendment compared to Com_CK. Overall, dewatered lignite, as an effective additive, exhibits great potential to simultaneously mitigate NH3 and GHG secondary pollution during composting and subsequent utilization of manure composts.

2.
Science ; 379(6639): 1332-1335, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36996200

ABSTRACT

The Australian continent contributes substantially to the year-to-year variability of the global terrestrial carbon dioxide (CO2) sink. However, the scarcity of in situ observations in remote areas prevents the deciphering of processes that force the CO2 flux variability. In this study, by examining atmospheric CO2 measurements from satellites in the period 2009-2018, we find recurrent end-of-dry-season CO2 pulses over the Australian continent. These pulses largely control the year-to-year variability of Australia's CO2 balance. They cause two to three times larger seasonal variations compared with previous top-down inversions and bottom-up estimates. The pulses occur shortly after the onset of rainfall and are driven by enhanced soil respiration preceding photosynthetic uptake in Australia's semiarid regions. The suggested continental-scale relevance of soil-rewetting processes has substantial implications for our understanding and modeling of global climate-carbon cycle feedbacks.

3.
Sci Total Environ ; 856(Pt 2): 159143, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36195151

ABSTRACT

Black carbon (BC) aerosols significantly contribute to radiative budgets globally, however their actual contributions remain poorly constrained in many under-sampled ocean regions. The tropical waters north of Australia are a part of the Indo-Pacific warm pool, regarded as a heat engine of global climate, and are in proximity to large terrestrial sources of BC aerosols such as fossil fuel emissions, and biomass burning emissions from northern Australia. Despite this, measurements of marine aerosols, especially BC remain elusive, leading to large uncertainties and discrepancies in current chemistry-climate models for this region. Here, we report the first comprehensive measurements of aerosol properties collected over the tropical warm pool in Australian waters during a voyage in late 2019. The non-marine related aerosol emissions observed in the Arafura Sea region were more intense than in the Timor Sea marine region, as the Arafura Sea was subject to greater continental outflows. The median equivalent BC (eBC) concentration in the Arafura Sea (0.66 µg m-3) was slightly higher than that in the Timor Sea (0.49 µg m-3). Source apportionment modelling and back trajectory analysis and tracer studies consistently suggest fossil fuel combustion eBC (eBCff) was the dominant contributor to eBC across the entire voyage region, with biomass burning eBC (eBCbb) making significant additional contributions to eBC in the Arafura Sea. eBCff (possibly from ship emissions or oil and gas rigs and their associated activities) and cloud condensation nuclei (CCN) were robustly correlated in the Timor Sea data, whereas eBCbb positively correlated to CCN in the Arafura Sea, suggesting different sources and atmospheric processing pathways occurred in these two regions. This work demonstrates the substantial impact that fossil fuel and biomass burning emissions can have on the composition of aerosols and cloud processes in the remote tropical marine atmosphere, and their potentially significant contribution to the radiative balance of the rapidly warming Indo-Pacific warm pool.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Environmental Monitoring , Australia , Soot/analysis , Aerosols/analysis , Fossil Fuels , Biomass , Carbon/analysis , Seasons
4.
Sci Rep ; 8(1): 6059, 2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29643384

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

5.
Sci Rep ; 7(1): 13567, 2017 10 19.
Article in English | MEDLINE | ID: mdl-29051612

ABSTRACT

The powerful El Niño event of 2015-2016 - the third most intense since the 1950s - has exerted a large impact on the Earth's natural climate system. The column-averaged CO2 dry-air mole fraction (XCO2) observations from satellites and ground-based networks are analyzed together with in situ observations for the period of September 2014 to October 2016. From the differences between satellite (OCO-2) observations and simulations using an atmospheric chemistry-transport model, we estimate that, relative to the mean annual fluxes for 2014, the most recent El Niño has contributed to an excess CO2 emission from the Earth's surface (land + ocean) to the atmosphere in the range of 2.4 ± 0.2 PgC (1 Pg = 1015 g) over the period of July 2015 to June 2016. The excess CO2 flux is resulted primarily from reduction in vegetation uptake due to drought, and to a lesser degree from increased biomass burning. It is about the half of the CO2 flux anomaly (range: 4.4-6.7 PgC) estimated for the 1997/1998 El Niño. The annual total sink is estimated to be 3.9 ± 0.2 PgC for the assumed fossil fuel emission of 10.1 PgC. The major uncertainty in attribution arise from error in anthropogenic emission trends, satellite data and atmospheric transport.

6.
Sci Rep ; 7(1): 8314, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28814720

ABSTRACT

Methane concentration in caves is commonly much lower than the external atmosphere, yet the cave CH4 depletion causal mechanism is contested and dynamic links to external diurnal and seasonal temperature cycles unknown. Here, we report a continuous 3-year record of cave methane and other trace gases in Jenolan Caves, Australia which shows a seasonal cycle of extreme CH4 depletion, from ambient ~1,775 ppb to near zero during summer and to ~800 ppb in winter. Methanotrophic bacteria, some newly-discovered, rapidly consume methane on cave surfaces and in external karst soils with lifetimes in the cave of a few hours. Extreme bacterial selection due to the absence of alternate carbon sources for growth in the cave environment has resulted in an extremely high proportion 2-12% of methanotrophs in the total bacteria present. Unexpected seasonal bias in our cave CH4 depletion record is explained by a three-step process involving methanotrophy in aerobic karst soil above the cave, summer transport of soil-gas into the cave through epikarst, followed by further cave CH4 depletion. Disentangling cause and effect of cave gas variations by tracing sources and sinks has identified seasonal speleothem growth bias, with implied palaeo-climate record bias.

7.
Anal Chem ; 89(6): 3648-3655, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28199097

ABSTRACT

This paper describes calibration strategies in laboratory conditions that can be applied to ensure accurate measurements of the isotopic composition of the CO2 in ultradry air, expressed as δ13C and δ18O on the VPDB scale, with either FT-IR (in this case a Vertex 70 V (Bruker)) or an isotope ratio infrared spectrometer (IRIS) (in this case a Delta Ray (Thermo Fisher Scientific)). In the case of FT-IR a novel methodology using only two standards of CO2 in air with different mole fractions but identical isotopic composition was demonstrated to be highly accurate for measurements of δ13C and δ18O with standard uncertainties of 0.09‰ and 1.03‰, respectively, at a nominal CO2 mole fraction of 400 µmol mol-1 in air. In the case of the IRIS system, we demonstrate that the use of two standards of CO2 in air of known but differing δ13C and δ18O isotopic composition allows standard uncertainties of 0.18‰ and 0.48‰ to be achieved for δ13C and δ18O measurements, respectively. The calibration strategies were validated using a set of five traceable primary reference gas mixtures. These standards, produced with whole air or synthetic air covered the mole fraction range of (378-420) µmol mol-1 and were prepared and/or value assigned either by the National Institute of Standards and Technology (NIST) or the National Physical Laboratory (NPL). The standards were prepared using pure CO2 obtained from different sources, namely, combustion; Northern Continental and Southern Oceanic Air and a gas well source, with δ13C values ranging between -35‰ and -1‰. The isotopic composition of all standards was value assigned at the Max Planck Institute for Biogeochemistry Jena (MPI-Jena).

8.
Sci Total Environ ; 565: 148-154, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27161136

ABSTRACT

Beef cattle feedlots are a major source of ammonia (NH3) emissions from livestock industries. We investigated the effects of lignite surface applications on NH3 and nitrous oxide (N2O) emissions from beef cattle feedlot pens. Two rates of lignite, 3 and 6kgm(-2), were tested in the treatment pen. No lignite was applied in the control pen. Twenty-four Black Angus steers were fed identical commercial rations in each pen. We measured NH3 and N2O concentrations continuously from 4th Sep to 13th Nov 2014 using Quantum Cascade Laser (QCL) NH3 analysers and a closed-path Fourier Transform Infrared Spectroscopy analyser (CP-FTIR) in conjunction with the integrated horizontal flux method to calculate NH3 and N2O fluxes. During the feeding period, 16 and 26% of the excreted nitrogen (N) (240gNhead(-1)day(-1)) was lost via NH3 volatilization from the control pen, while lignite application decreased NH3 volatilization to 12 and 18% of the excreted N, for Phase 1 and Phase 2, respectively. Compared to the control pen, lignite application decreased NH3 emissions by approximately 30%. Nitrous oxide emissions from the cattle pens were small, 0.10 and 0.14gN2O-Nhead(-1)day(-1) (<0.1% of excreted N) for the control pen, for Phase 1 and Phase 2, respectively. Lignite application increased direct N2O emissions by 40 and 57%, to 0.14 and 0.22gN2O-Nhead(-1)day(-1), for Phase 1 and Phase 2, respectively. The increase in N2O emissions resulting from lignite application was counteracted by the lower indirect N2O emission due to decreased NH3 volatilization. Using 1% as a default emission factor of deposited NH3 for indirect N2O emissions, the application of lignite decreased total N2O emissions.


Subject(s)
Air Pollutants/analysis , Ammonia/analysis , Animal Feed/analysis , Coal , Manure/analysis , Nitrous Oxide/analysis , Animal Husbandry/methods , Animals , Cattle , Environmental Monitoring/methods , Housing, Animal
9.
J Environ Qual ; 42(5): 1327-40, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24216411

ABSTRACT

Synthetic fertilizer N additions to soils have significantly increased atmospheric NO concentrations, and advanced methods are needed to track the amount of applied N that is transformed to NO in the field. We have developed a method for continuous measurement of NO isotopologues (NNO, NNO, NNO, and NNO) following 0.4 and 0.8 g N m of N-labeled substrate as KNO or urea [CO(NH)] using Fourier-transform infrared (FTIR) spectroscopy. We evaluated this method using two 4-wk experimental trials on a coastal floodplain site near Nowra, New South Wales, Australia, which is managed for silage production. We deployed an automated five-chamber system connected to a portable FTIR spectrometer with multipass cell to measure NO isotopologue fluxes. Emissions of all isotopologues were evident immediately following N addition. All isotopologues responded positively to rainfall events, but only for 7 to 10 d following N addition. Cumulative N-NO fluxes (sum of the three N isotopologues) per chamber for the 14 d following N addition ranged from 1.5 to 10.3 mg N m. Approximately 1% (range 0.7-1.9%) of the total amount of N applied was emitted as NO. Repeatability (1σ) for all isotopologue measurements was better than 0.5 nmol mol for 1-min average concentration measurements, and minimum detectable fluxes for each isotopologue were <0.1 ng N m s. The results indicate that the portable FTIR spectroscopic technique can effectively trace transfer of N to the atmosphere as NO after N addition, allowing powerful quantification of NO emissions under field conditions.


Subject(s)
Nitrogen , Nitrous Oxide , Fertilizers , Soil , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis
10.
Philos Trans A Math Phys Eng Sci ; 369(1943): 2087-112, 2011 May 28.
Article in English | MEDLINE | ID: mdl-21502178

ABSTRACT

A global network of ground-based Fourier transform spectrometers has been founded to remotely measure column abundances of CO(2), CO, CH(4), N(2)O and other molecules that absorb in the near-infrared. These measurements are directly comparable with the near-infrared total column measurements from space-based instruments. With stringent requirements on the instrumentation, acquisition procedures, data processing and calibration, the Total Carbon Column Observing Network (TCCON) achieves an accuracy and precision in total column measurements that is unprecedented for remote-sensing observations (better than 0.25% for CO(2)). This has enabled carbon-cycle science investigations using the TCCON dataset, and allows the TCCON to provide a link between satellite measurements and the extensive ground-based in situ network.

11.
Anal Chem ; 81(6): 2227-34, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19231842

ABSTRACT

Nitrous oxide (N(2)O) plays important roles in atmospheric chemistry both as a greenhouse gas and in stratospheric ozone depletion. Isotopic measurements of N(2)O have provided an invaluable insight into understanding its atmospheric sources and sinks. The preference for (15)N fractionation between the central and terminal positions (the "site preference") is particularly valuable because it depends principally on the processes involved in N(2)O production or consumption, rather than the (15)N content of the substrate from which it is formed. Despite the value of measurements of the site preference, there is no internationally recognized standard reference material of accurately known and accepted site preference, and there has been some lack of agreement in published studies aimed at providing such a standard. Previous work has been based on isotope ratio mass spectrometry (IRMS); in this work we provide an absolute calibration for the intramolecular site preference of (15)N fractionation of working standard gases used in our laboratory by a completely independent technique--high-resolution Fourier transform infrared (FT-IR) spectroscopy. By reference to this absolute calibration, we determine the site preference for 25 samples of tropospheric N(2)O collected under clean air conditions to be 19.8 per thousand +/- 2.1 per thousand. This result is in agreement with that based on the earlier absolute calibration of Toyoda and Yoshida (Toyoda , S. , and Yoshida , N. Anal. Chem. 1999 , 71, 4711-4718 ) who found an average tropospheric site preference of 18.7 per thousand +/- 2.2 per thousand. We now recommend an interlaboratory exchange of working standard N(2)O gases as the next step to providing an international reference standard.

12.
J Environ Qual ; 37(2): 582-91, 2008.
Article in English | MEDLINE | ID: mdl-18396544

ABSTRACT

Accurate measurements of methane (CH4) emission rates from livestock in their undisturbed natural environments are required to assess their impacts on radiative forcing (i.e., enhanced greenhouse effect) and the environment. Here we compare results from two nonintrusive techniques for the measurement of CH4 emissions from cattle. The cows were kept in an outdoor feeding strip that allowed them to follow natural behavioral patterns but contained them within a well defined space. In the first technique, nitrous oxide (N2O) was released as a tracer at the upwind edge of the feeding strip, and the downwind concentrations of N2O and CH4 were measured simultaneously using Fourier transform infrared (FTIR) spectroscopy. Average CH4 emission per cow was calculated each half-hour on three separate days from the correlation between the two gases. The second technique was the integrated horizontal flux (IHF) or 1-D mass-balance method, in which we used the measured vertical profiles of CH4 concentration and windspeed downwind of the cows to determine the total CH4 emission. Comparing the IHF results to the known release rate of N2O allowed us to test the IHF technique independently. We found agreement within 10% for all comparisons on all days. The daily CH4 emission rate averaged over all tracer and IHF measurements was 342 g CH4 head(-1) d(-1). This is within the range of previous measurements for mature lactating dairy cattle (200-430 g CH4 head(-1) d(-1)) but higher than expected for yearling cattle. The high CH4 emissions are accompanied by high CO2 emissions determined from the FTIR measurements. The bias is most likely due to the measurements being made during and after supplementary feeding of the cattle.


Subject(s)
Air Pollutants/analysis , Carbon Dioxide/analysis , Dairying , Environmental Monitoring/methods , Methane/analysis , Nitrous Oxide/analysis , Animals , Cattle , Female , New Zealand , Spectroscopy, Fourier Transform Infrared
13.
Isotopes Environ Health Stud ; 42(1): 9-20, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16500751

ABSTRACT

Continuous records of isotope behaviour in the environment are invaluable to understanding mass and energy fluxes. Although techniques such as isotope ratio mass spectrometry provide high precision data, they are not well suited to the analysis of a large number of samples and are currently restricted to use in the laboratory. Fourier transform infrared spectrometers are relatively cheap and sufficiently portable and robust to be taken into the field to collect continuous records of gas-phase isotope behaviour. Several examples of the application of this technique will be presented. One data set provides half-hourly determinations of vertical profiles of D/H in water vapour above agricultural fields over a 3-week period; the same infrared spectra can also be used to determine 13C/12C in CO2. The technique has also been applied to the study of CO2 in ambient air and in a limestone cave system. Some of the features and complications associated with the method will also be considered.


Subject(s)
Air/analysis , Carbon Dioxide/chemistry , Carbon Isotopes/chemistry , Deuterium/chemistry , Spectroscopy, Fourier Transform Infrared , Water/chemistry , Agriculture , Ecosystem , Humans , Plants/metabolism , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...