Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Clin Cancer Res ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743766

ABSTRACT

PURPOSE: Antibody-drug conjugates (ADCs) are targeted therapies with robust efficacy in solid cancers, and there is intense interest in using EGFR-specific ADCs to target EGFR-amplified glioblastoma (GBM). Given the molecular heterogeneity of GBM, bystander activity of ADCs may be important for determining treatment efficacy. In this study, the activity and toxicity of two EGFR-targeted ADCs, Losatuxizumab vedotin (ABBV-221) and Depatuxizumab mafodotin (Depatux-M), with similar auristatin toxins, were compared in GBM patient-derived xenografts (PDXs) and normal murine brain following direct infusion by convection enhanced delivery (CED). METHODS: EGFRviii-amplified and non-amplified GBM PDXs were used to determine in vitro cytotoxicity, in vivo efficacy, and bystander activities of ABBV-221 and Depatux-M. Non-tumor bearing mice were used to evaluate pharmacokinetics and toxicity of ADCs using LC-MS/MS and immunohistochemistry. RESULTS: CED improved intracranial efficacy of Depatux-M and ABBV-221 in three EGFRviii-amplified GBM PDX models (Median survival: 125 to >300 days vs 20-49 days with isotype-control AB095). Both ADCs had comparable in vitro and in vivo efficacy. However, neuronal toxicity and CD68+ microglia/macrophage infiltration were significantly higher in brains infused with ABBV-221, with the cell-permeable MMAE, as compared to Depatux-M, with the cell-impermeant MMAF. CED infusion of ABBV-221 into brain or incubation of ABBV-221 with normal brain homogenate resulted in significant release of MMAE, which is consistent with linker instability in the brain microenvironment. CONCLUSION: EGFR-targeting ADCs are promising therapeutic options for GBM when delivered intra-tumorally by CED. However, the linker and payload for the ADC must be carefully considered to maximize the therapeutic window.

2.
Neurooncol Adv ; 4(1): vdac130, 2022.
Article in English | MEDLINE | ID: mdl-36071925

ABSTRACT

Background: EGFR targeting antibody-drug conjugates (ADCs) are highly effective against EGFR-amplified tumors, but poor distribution across the blood-brain barrier (BBB) limits their efficacy in glioblastoma (GBM) when administered systemically. We studied whether convection-enhanced delivery (CED) can be used to safely infuse ADCs into orthotopic patient-derived xenograft (PDX) models of EGFRvIII mutant GBM. Methods: The efficacy of the EGFR-targeted ADCs depatuxizumab mafodotin (Depatux-M) and Serclutamab talirine (Ser-T) was evaluated in vitro and in vivo. CED was performed in nontumor and tumor-bearing mice. Immunostaining was used to evaluate ADC distribution, pharmacodynamic effects, and normal cell toxicity. Results: Dose-finding studies in orthotopic GBM6 identified single infusion of 2 µg Ser-T and 60 µg Depatux-M as safe and effective associated with extended survival prolongation (>300 days and 95 days, respectively). However, with serial infusions every 21 days, four Ser-T doses controlled tumor growth but was associated with lethal toxicity approximately 7 days after the final infusion. Limiting dosing to two infusions in GBM108 provided profound median survival extension of over 200 days. In contrast, four Depatux-M CED doses were well tolerated and significantly extended survival in both GBM6 (158 days) and GBM108 (310 days). In a toxicity analysis, Ser-T resulted in a profound loss in NeuN+ cells and markedly elevated GFAP staining, while Depatux-M was associated only with modest elevation in GFAP staining. Conclusion: CED of Depatux-M is well tolerated and results in extended survival in orthotopic GBM PDXs. In contrast, CED of Ser-T was associated with a much narrower therapeutic window.

3.
Cell Rep ; 39(12): 110991, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35732128

ABSTRACT

Inhibitors of the mitotic kinesin Kif11 are anti-mitotics that, unlike vinca alkaloids or taxanes, do not disrupt microtubules and are not neurotoxic. However, development of resistance has limited their clinical utility. While resistance to Kif11 inhibitors in other cell types is due to mechanisms that prevent these drugs from disrupting mitosis, we find that in glioblastoma (GBM), resistance to the Kif11 inhibitor ispinesib works instead through suppression of apoptosis driven by activation of STAT3. This form of resistance requires dual phosphorylation of STAT3 residues Y705 and S727, mediated by SRC and epidermal growth factor receptor (EGFR), respectively. Simultaneously inhibiting SRC and EGFR reverses this resistance, and combined targeting of these two kinases in vivo with clinically available inhibitors is synergistic and significantly prolongs survival in ispinesib-treated GBM-bearing mice. We thus identify a translationally actionable approach to overcoming Kif11 inhibitor resistance that may work to block STAT3-driven resistance against other anti-cancer therapies as well.


Subject(s)
Antimitotic Agents , Glioblastoma , Animals , Antimitotic Agents/pharmacology , Cell Line, Tumor , ErbB Receptors/metabolism , Glioblastoma/drug therapy , Glioblastoma/metabolism , Kinesins , Mice , STAT3 Transcription Factor/metabolism , Signal Transduction
5.
J Intern Med ; 292(1): 3-30, 2022 07.
Article in English | MEDLINE | ID: mdl-35040235

ABSTRACT

Brain tumours have a poor prognosis and lack effective treatments. The blood-brain barrier (BBB) represents a major hurdle to drug delivery to brain tumours. In some locations in the tumour, the BBB may be disrupted to form the blood-brain tumour barrier (BBTB). This leaky BBTB enables diagnosis of brain tumours by contrast enhanced magnetic resonance imaging; however, this disruption is heterogeneous throughout the tumour. Thus, relying on the disrupted BBTB for achieving effective drug concentrations in brain tumours has met with little clinical success. Because of this, it would be beneficial to design drugs and drug delivery strategies to overcome the 'normal' BBB to effectively treat the brain tumours. In this review, we discuss the role of BBB/BBTB in brain tumour diagnosis and treatment highlighting the heterogeneity of the BBTB. We also discuss various strategies to improve drug delivery across the BBB/BBTB to treat both primary and metastatic brain tumours. Recognizing that the BBB represents a critical determinant of drug efficacy in central nervous system tumours will allow a more rapid translation from basic science to clinical application. A more complete understanding of the factors, such as BBB-limited drug delivery, that have hindered progress in treating both primary and metastatic brain tumours, is necessary to develop more effective therapies.


Subject(s)
Blood-Brain Barrier , Brain Neoplasms , Blood-Brain Barrier/pathology , Brain/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Drug Delivery Systems/methods , Humans
6.
J Pharmacol Exp Ther ; 380(1): 34-46, 2022 01.
Article in English | MEDLINE | ID: mdl-34663676

ABSTRACT

Novel combinations of specific opioid agonists like loperamide and oxymorphindole targeting the µ- and δ-opioid receptors, respectively, have shown increased potency with minimized opioid-associated risks. However, whether their interaction is pharmacokinetic or pharmacodynamic in nature has not been determined. This study quantitatively determined whether these drugs have a pharmacokinetic interaction that alters systemic disposition or central nervous system (CNS) distribution. We performed intravenous and oral in vivo pharmacokinetic assessments of both drugs after discrete dosing and administration in combination to determine whether the combination had any effect on systemic pharmacokinetic parameters or CNS exposure. Drugs were administered at 5 or 10 mg/kg i.v. or 30 mg/kg orally to institute for cancer research (ICR) mice and 5 mg/kg i.v. to Friend leukemia virus strain B mice of the following genotypes: wild-type, breast cancer resistance protein (Bcrp-/- ) (Bcrp knockout), Mdr1a/b-/- [P-glycoprotein (P-gp) knockout], and Bcrp-/- Mdr1a/b-/- (triple knockout). In the combination, clearance of oxymorphindole (OMI) was reduced by approximately half, and the plasma area under the concentration-time curve (AUC) increased. Consequently, brain and spinal cord AUCs for OMI in the combination also increased proportionately. Both loperamide and OMI are P-gp substrates, but administration of the two drugs in combination does not alter efflux transport at the CNS barriers. Because OMI alone shows appreciable brain penetration but little therapeutic efficacy on its own, and because loperamide's CNS distribution is unchanged in the combination, the mechanism of action for the increased potency of the combination is most likely pharmacodynamic and most likely occurs at receptors in the peripheral nervous system. This combination has favorable characteristics for future development. SIGNIFICANCE STATEMENT: Opioids have yet to be replaced as the most effective treatments for moderate-to-severe pain and chronic pain, but their side effects are dangerous. Combinations of opioids with peripheral activity, such as loperamide and oxymorphindole, would be valuable in that they are effective at much lower doses and have reduced risks for dangerous side effects because the µ-opioid receptor agonist is largely excluded from the CNS.


Subject(s)
Central Nervous System/metabolism , Loperamide/pharmacokinetics , Morpholines/pharmacokinetics , Receptors, Opioid/agonists , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Animals , Drug Combinations , Drug Synergism , Female , Genotype , Loperamide/administration & dosage , Male , Mice , Mice, Inbred ICR , Morpholines/administration & dosage , Tissue Distribution
7.
Psychiatr Serv ; 72(8): 885-890, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33993715

ABSTRACT

OBJECTIVE: Preventing aggression and reducing restrictive practices in mental health units rely on routine, accurate risk assessment accompanied by appropriate and timely intervention. The authors studied the use of an electronic clinical decision support system that combines two elements, the Dynamic Appraisal of Situational Aggression instrument and an aggression prevention protocol (eDASA+APP), in acute forensic mental health units for men. METHODS: The authors conducted a cluster-randomized controlled trial incorporating a crossover design with baseline, intervention, and washout periods in a statewide, secure forensic mental health service. The study included 36 mental health nurses (13 men and 23 women, ages 20-65 years) with direct patient care responsibility and 77 male patients (ages 21-77 years) admitted to one of two acute mental health units during the baseline and intervention periods. RESULTS: eDASA+APP implementation was associated with a significant reduction in the odds of an aggressive incident (OR=0.56, 95% confidence interval [95% CI]=0.45-0.70, p<0.001) and a significant decrease in the odds of administration of as-needed medication (OR=0.64, 95% CI=0.50-0.83, p<0.001). Physical aggression was too infrequent for statistical significance of any effects of eDASA+APP to be determined; however, incidents of physical aggression tended to be fewer during the eDASA+APP phase. CONCLUSIONS: These results support the use of the eDASA+APP to help reduce incidents of aggression and restrictive practices in mental health units.


Subject(s)
Decision Support Systems, Clinical , Mental Disorders , Mental Health Services , Adult , Aged , Aggression , Female , Humans , Male , Mental Disorders/therapy , Middle Aged , Violence/prevention & control , Young Adult
8.
Trends Pharmacol Sci ; 42(6): 426-428, 2021 06.
Article in English | MEDLINE | ID: mdl-33736874

ABSTRACT

Apparent blood-brain barrier (BBB) disruption is common in glioblastoma (GBM), but has not translated to improved drug delivery efficacy. Recently, de Gooijer et al. demonstrated that efflux transporters can have a prominent role in limiting drug delivery. These transport systems contribute to ineffective drug delivery to tumor cells in the brain.


Subject(s)
Brain Neoplasms , Glioblastoma , Pharmaceutical Preparations , Biological Transport , Blood-Brain Barrier , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Humans
9.
Pharmaceutics ; 12(12)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322488

ABSTRACT

Effective treatments for brain tumors remain one of the most urgent and unmet needs in modern oncology. This is due not only to the presence of the neurovascular unit/blood-brain barrier (NVU/BBB) but also to the heterogeneity of barrier alteration in the case of brain tumors, which results in what is referred to as the blood-tumor barrier (BTB). Herein, we discuss this heterogeneity, how it contributes to the failure of novel pharmaceutical treatment strategies, and why a "whole brain" approach to the treatment of brain tumors might be beneficial. We discuss various methods by which these obstacles might be overcome and assess how these strategies are progressing in the clinic. We believe that by approaching brain tumor treatment from this perspective, a new paradigm for drug delivery to brain tumors might be established.

10.
J Cent Nerv Syst Dis ; 11: 1179573519840652, 2019.
Article in English | MEDLINE | ID: mdl-31007531

ABSTRACT

Sepsis is a systemic inflammatory disease resulting from an infection. This disorder affects 750 000 people annually in the United States and has a 62% rehospitalization rate. Septic symptoms range from typical flu-like symptoms (eg, headache, fever) to a multifactorial syndrome known as sepsis-associated encephalopathy (SAE). Patients with SAE exhibit an acute altered mental status and often have higher mortality and morbidity. In addition, many sepsis survivors are also burdened with long-term cognitive impairment. The mechanisms through which sepsis initiates SAE and promotes long-term cognitive impairment in septic survivors are poorly understood. Due to its unique role as an interface between the brain and the periphery, numerous studies support a regulatory role for the blood-brain barrier (BBB) in the progression of acute and chronic brain dysfunction. In this review, we discuss the current body of literature which supports the BBB as a nexus which integrates signals from the brain and the periphery in sepsis. We highlight key insights on the mechanisms that contribute to the BBB's role in sepsis which include neuroinflammation, increased barrier permeability, immune cell infiltration, mitochondrial dysfunction, and a potential barrier role for tissue non-specific alkaline phosphatase (TNAP). Finally, we address current drug treatments (eg, antimicrobials and intravenous immunoglobulins) for sepsis and their potential outcomes on brain function. A comprehensive understanding of these mechanisms may enable clinicians to target specific aspects of BBB function as a therapeutic tool to limit long-term cognitive impairment in sepsis survivors.

11.
BMC Cancer ; 18(1): 1225, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30526520

ABSTRACT

BACKGROUND: Brain tumor vasculature can be significantly compromised and leakier than that of normal brain blood vessels. Little is known if there are vascular permeability alterations in the brain adjacent to tumor (BAT). Changes in BAT permeability may also lead to increased drug permeation in the BAT, which may exert toxicity on cells of the central nervous system. Herein, we studied permeation changes in BAT using quantitative fluorescent microscopy and autoradiography, while the effect of chemotherapy within the BAT region was determined by staining for activated astrocytes. METHODS: Human metastatic breast cancer cells (MDA-MB-231Br) were injected into left ventricle of female NuNu mice. Metastases were allowed to grow for 28 days, after which animals were injected fluorescent tracers Texas Red (625 Da) or Texas Red dextran (3 kDa) or a chemotherapeutic agent 14C-paclitaxel. The accumulation of tracers and 14C-paclitaxel in BAT were determined by using quantitative fluorescent microscopy and autoradiography respectively. The effect of chemotherapy in BAT was determined by staining for activated astrocytes. RESULTS: The mean permeability of texas Red (625 Da) within BAT region increased 1.0 to 2.5-fold when compared to normal brain, whereas, Texas Red dextran (3 kDa) demonstrated mean permeability increase ranging from 1.0 to 1.8-fold compared to normal brain. The Kin values in the BAT for both Texas Red (625 Da) and Texas Red dextran (3 kDa) were found to be 4.32 ± 0.2 × 105 mL/s/g and 1.6 ± 1.4 × 105 mL/s/g respectively and found to be significantly higher than the normal brain. We also found that there is significant increase in accumulation of 14C-Paclitaxel in BAT compared to the normal brain. We also observed animals treated with chemotherapy (paclitaxel (10 mg/kg), erubilin (1.5 mg/kg) and docetaxel (10 mg/kg)) showed activated astrocytes in BAT. CONCLUSIONS: Our data showed increased permeation of fluorescent tracers and 14C-paclitaxel in the BAT. This increased permeation lead to elevated levels of activated astrocytes in BAT region in the animals treated with chemotherapy.


Subject(s)
Brain Neoplasms/pathology , Brain/pathology , Breast Neoplasms/pathology , Animals , Blood-Brain Barrier/pathology , Brain/drug effects , Brain Neoplasms/drug therapy , Breast Neoplasms/drug therapy , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , Models, Theoretical , Paclitaxel/pharmacology , Permeability
12.
Pharm Res ; 35(2): 31, 2018 Jan 09.
Article in English | MEDLINE | ID: mdl-29368289

ABSTRACT

PURPOSE: The blood-tumor barrier (BTB) limits irinotecan distribution in tumors of the central nervous system. However, given that the BTB has increased passive permeability we hypothesize that liposomal irinotecan would improve local exposure of irinotecan and its active metabolite SN-38 in brain metastases relative to conventional irinotecan due to enhanced-permeation and retention (EPR) effect. METHODS: Female nude mice were intracardially or intracranially implanted with human brain seeking breast cancer cells (brain metastases of breast cancer model). Mice were administered vehicle, non-liposomal irinotecan (50 mg/kg), liposomal irinotecan (10 mg/kg and 50 mg/kg) intravenously starting on day 21. Drug accumulation, tumor burden, and survival were evaluated. RESULTS: Liposomal irinotecan showed prolonged plasma drug exposure with mean residence time (MRT) of 17.7 ± 3.8 h for SN-38, whereas MRT was 3.67 ± 1.2 for non-liposomal irinotecan. Further, liposomal irinotecan accumulated in metastatic lesions and demonstrated prolonged exposure of SN-38 compared to non-liposomal irinotecan. Liposomal irinotecan achieved AUC values of 6883 ± 4149 ng-h/g for SN-38, whereas non-liposomal irinotecan showed significantly lower AUC values of 982 ± 256 ng-h/g for SN-38. Median survival for liposomal irinotecan was 50 days, increased from 37 days (p<0.05) for vehicle. CONCLUSIONS: Liposomal irinotecan accumulates in brain metastases, acts as depot for sustained release of irinotecan and SN-38, which results in prolonged survival in preclinical model of breast cancer brain metastasis.


Subject(s)
Brain Neoplasms/drug therapy , Brain/metabolism , Irinotecan/pharmacokinetics , Topoisomerase I Inhibitors/pharmacokinetics , Triple Negative Breast Neoplasms/pathology , Animals , Brain/pathology , Brain Neoplasms/mortality , Brain Neoplasms/secondary , Cell Line, Tumor , Female , Humans , Injections, Intravenous , Irinotecan/therapeutic use , Liposomes , Mice , Mice, Nude , Nanoparticles , Permeability , Tissue Distribution , Topoisomerase I Inhibitors/therapeutic use , Treatment Outcome , Xenograft Model Antitumor Assays
13.
Oncotarget ; 8(48): 83734-83744, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-29137378

ABSTRACT

BACKGROUND: Drug and antibody delivery to brain metastases has been highly debated in the literature. The blood-tumor barrier (BTB) is more permeable than the blood-brain barrier (BBB), and has shown to have highly functioning efflux transporters and barrier properties, which limits delivery of targeted therapies. METHODS: We characterized the permeability of 125I-trastuzumab in an in-vivo, and fluorescent trastuzumab-Rhodamine123 (t-Rho123) in a novel microfluidic in-vitro, BBB and BTB brain metastases of breast cancer model. In-vivo: Human MDA-MB-231-HER2+ metastatic breast cancer cells were grown and maintained under static conditions. Cells were harvested at 80% confluency and prepped for intra-cardiac injection into 20 homozygous female Nu/Nu mice. In-vitro: In a microfluidic device (SynVivo), human umbilical vein endothelial cells were grown and maintained under shear stress conditions in the outer compartment and co-cultured with CTX-TNA2 rat brain astrocytes (BBB) or Met-1 metastatic HER2+ murine breast cancer cells (BTB), which were maintained in the central compartment under static conditions. RESULTS: Tissue distribution of 125I-trastuzumab revealed only ~3% of injected dose reached normal brain, with ~5% of injected dose reaching brain tumors. No clear correlation was observed between size of metastases and the amount of 125I-trastuzumab localized in-vivo. This heterogeneity was paralleled in-vitro, where the distribution of t-Rho123 from the outer chamber to the central chamber of the microfluidic device was qualitatively and quantitatively analyzed over time. The rate of t-Rho123 linear uptake in the BBB (0.27 ± 0.33 × 104) and BTB (1.29 ± 0.93 × 104) showed to be significantly greater than 0 (p < 0.05). The BTB devices showed significant heterogenetic tendencies, as seen in in-vivo. CONCLUSIONS: This study is one of the first studies to measure antibody movement across the blood-brain and blood-tumor barriers, and demonstrates that, though in small and most likely not efficacious quantities, trastuzumab does cross the blood-brain and blood-tumor barriers.

14.
Fluids Barriers CNS ; 14(1): 3, 2017 Jan 23.
Article in English | MEDLINE | ID: mdl-28114946

ABSTRACT

BACKGROUND: The lack of translatable in vitro blood-tumor barrier (BTB) models creates challenges in the development of drugs to treat tumors of the CNS and our understanding of how the vascular changes at the BBB in the presence of a tumor. METHODS: In this study, we characterize a novel microfluidic model of the BTB (and BBB model as a reference) that incorporates flow and induces shear stress on endothelial cells. Cell lines utilized include human umbilical vein endothelial cells co-cultured with CTX-TNA2 rat astrocytes (BBB) or Met-1 metastatic murine breast cancer cells (BTB). Cells were capable of communicating across microfluidic compartments via a porous interface. We characterized the device by comparing permeability of three passive permeability markers and one marker subject to efflux. RESULTS: The permeability of Sulforhodamine 101 was significantly (p < 0.05) higher in the BTB model (13.1 ± 1.3 × 10-3, n = 4) than the BBB model (2.5 ± 0.3 × 10-3, n = 6). Similar permeability increases were observed in the BTB model for molecules ranging from 600 Da to 60 kDa. The function of P-gp was intact in both models and consistent with recent published in vivo data. Specifically, the rate of permeability of Rhodamine 123 across the BBB model (0.6 ± 0.1 × 10-3, n = 4), increased 14-fold in the presence of the P-gp inhibitor verapamil (14.7 ± 7.5 × 10-3, n = 3) and eightfold with the addition of Cyclosporine A (8.8 ± 1.8 × 10-3, n = 3). Similar values were noted in the BTB model. CONCLUSIONS: The dynamic microfluidic in vitro BTB model is a novel commercially available model that incorporates shear stress, and has permeability and efflux properties that are similar to in vivo data.


Subject(s)
Capillary Permeability , Microfluidics/methods , Models, Cardiovascular , Neoplasms/blood supply , Neoplasms/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Cell Line , Coculture Techniques , Diffusion , Human Umbilical Vein Endothelial Cells , Humans , Kinetics , Mice , Models, Neurological , Rats
15.
Curr Cancer Drug Targets ; 17(5): 479-485, 2017.
Article in English | MEDLINE | ID: mdl-27903215

ABSTRACT

BACKGROUND: Brain cancer from metastasized breast cancer has a high mortality rate in women. The treatment of lesions is hampered in large part by the blood-brain barrier (BBB), which prevents adequate distribution of anti-cancer compounds to brain metastases. METHOD: In this study we used a novel screening method to identify candidate molecules that are well-suited to utilizing the BBB choline transporter for distribution into the brain parenchyma. RESULTS: From our screen we identified two compounds, Ch-1 and Ch-2 that were able to reduce the brain tumor burden in a murine mouse model of brain metastasis of breast cancer. These compounds also significantly increased the survival of mice by more than 10 days. Mechanistic studies indicated that Ch-1 is able to prevent the activation of the pro-survival mitogen-activated kinases (MAPKs) by osteoactivin (OA; Glycoprotein nonmetastatic melanoma protein B GPNMB). CONCLUSION: The results from this study show that nutrient transporter virtual screening is a viable novel alternative to traditional drug screening programs to identify anti-cancer compounds for the treatment of brain cancers.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/secondary , Breast Neoplasms/pathology , Animals , Apoptosis , Brain Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Mice
16.
Clin Exp Metastasis ; 33(4): 373-83, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26944053

ABSTRACT

The blood-brain barrier (BBB) is compromised in brain metastases, allowing for enhanced drug permeation into brain. The extent and heterogeneity of BBB permeability in metastatic lesions is important when considering the administration of chemotherapeutics. Since permeability characteristics have been described in limited experimental models of brain metastases, we sought to define these changes in five brain-tropic breast cancer cell lines: MDA-MB-231BR (triple negative), MDA-MB-231BR-HER2, JIMT-1-BR3, 4T1-BR5 (murine), and SUM190 (inflammatory HER2 expressing). Permeability was assessed using quantitative autoradiography and fluorescence microscopy by co-administration of the tracers (14)C-aminoisobutyric acid (AIB) and Texas red conjugated dextran prior to euthanasia. Each experimental brain metastases model produced variably increased permeability to both tracers; additionally, the magnitude of heterogeneity was different among each model with the highest ranges observed in the SUM190 (up to 45-fold increase in AIB) and MDA-MB-231BR-HER2 (up to 33-fold in AIB) models while the lowest range was observed in the JIMT-1-BR3 (up to 5.5-fold in AIB) model. There was no strong correlation observed between lesion size and permeability in any of these preclinical models of brain metastases. Interestingly, the experimental models resulting in smaller mean metastases size resulted in shorter median survival while models producing larger lesions had longer median survival. These findings strengthen the evidence of heterogeneity in brain metastases of breast cancer by utilizing five unique experimental models and simultaneously emphasize the challenges of chemotherapeutic approaches to treat brain metastases.


Subject(s)
Blood-Brain Barrier/pathology , Brain Neoplasms/pathology , Breast Neoplasms/pathology , Animals , Brain Neoplasms/genetics , Brain Neoplasms/secondary , Breast Neoplasms/genetics , Cell Line, Tumor , Female , Humans , Mice , Permeability , Receptor, ErbB-2/biosynthesis
17.
Int J Ment Health Nurs ; 22(6): 485-92, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23363378

ABSTRACT

Empirically derived structured violence risk assessment instruments are increasingly used by nurses in forensic mental health settings, typically demonstrating stronger predictive validity than unaided clinical risk assessments, and associated with reduced aggression and reduced restrictive practices including seclusion. However, these instruments are less often used in non-forensic mental health settings despite frequent aggression in these settings. This study represents the first test of the Dynamic Appraisal of Situational Aggression (DASA-IV), a structured instrument used to appraise risk for imminent aggression in a non-forensic mental health hospital. Predictive validity of DASA-IV, and unaided clinical and structured clinical judgements made after DASA-IV assessments were compared. Participants included 105 nurses at two mental health inpatient units in rural Victoria, Australia. During the study, 482 DASA-IV assessments and structured clinical judgements were compared with 997 unaided clinical risk judgements. DASA-IV total scores predicted aggression significantly better than unaided clinical risk ratings over the subsequent 24 hours and for the next shift. Nurses' structured clinical judgement ratings were more accurate than unaided clinical appraisals but less accurate than actuarial (DASA-IV derived) scores. The DASA-IV presents as a valid measure for appraising risk of imminent aggression in mainstream mental health inpatient settings.


Subject(s)
Aggression/psychology , Mental Health , Humans , Inpatients/psychology , Mental Disorders/nursing , Risk Assessment , Violence/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...