Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
Hum Brain Mapp ; 45(3): e26627, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38376166

ABSTRACT

The hippocampus and parahippocampal gyrus have been implicated as part of a tinnitus network by a number of studies. These structures are usually considered in the context of a "limbic system," a concept typically invoked to explain the emotional response to tinnitus. Despite this common framing, it is not apparent from current literature that this is necessarily the main functional role of these structures in persistent tinnitus. Here, we highlight a different role that encompasses their most commonly implicated functional position within the brain-that is, as a memory system. We consider tinnitus as an auditory object that is held in memory, which may be made persistent by associated activity from the hippocampus and parahippocampal gyrus. Evidence from animal and human studies implicating these structures in tinnitus is reviewed and used as an anchor for this hypothesis. We highlight the potential for the hippocampus/parahippocampal gyrus to facilitate maintenance of the memory of the tinnitus percept via communication with auditory cortex, rather than (or in addition to) mediating emotional responses to this percept.


Subject(s)
Auditory Cortex , Tinnitus , Animals , Humans , Tinnitus/diagnostic imaging , Hippocampus/diagnostic imaging , Parahippocampal Gyrus/diagnostic imaging , Limbic System
2.
Magn Reson Med ; 91(2): 773-783, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37831659

ABSTRACT

PURPOSE: DTI characterizes tissue microstructure and provides proxy measures of nerve health. Echo-planar imaging is a popular method of acquiring DTI but is susceptible to various artifacts (e.g., susceptibility, motion, and eddy currents), which may be ameliorated via preprocessing. There are many pipelines available but limited data comparing their performance, which provides the rationale for this study. METHODS: DTI was acquired from the upper limb of heathy volunteers at 3T in blip-up and blip-down directions. Data were independently corrected using (i) FSL's TOPUP & eddy, (ii) FSL's TOPUP, (iii) DSI Studio, and (iv) TORTOISE. DTI metrics were extracted from the median, radial, and ulnar nerves and compared (between pipelines) using mixed-effects linear regression. The geometric similarity of corrected b = 0 images and the slice matched T1-weighted (T1w) images were computed using the Sörenson-Dice coefficient. RESULTS: Without preprocessing, the similarity coefficient of the blip-up and blip-down datasets to the T1w was 0·80 and 0·79, respectively. Preprocessing improved the geometric similarity by 1% with no difference between pipelines. Compared to TOPUP & eddy, DSI Studio and TORTOISE generated 2% and 6% lower estimates of fractional anisotropy, and 6% and 13% higher estimates of radial diffusivity, respectively. Estimates of anisotropy from TOPUP & eddy versus TOPUP were not different but TOPUP reduced radial diffusivity by 3%. The agreement of DTI metrics between pipelines was poor. CONCLUSIONS: Preprocessing DTI from the upper limb improves geometric similarity but the choice of the pipeline introduces clinically important variability in diffusion parameter estimates from peripheral nerves.


Subject(s)
Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Humans , Diffusion Tensor Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Peripheral Nerves , Upper Extremity/diagnostic imaging , Echo-Planar Imaging , Image Processing, Computer-Assisted/methods
4.
J Assoc Res Otolaryngol ; 24(6): 607-617, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38062284

ABSTRACT

OBJECTIVES: Cochlear implant (CI) users exhibit large variability in understanding speech in noise. Past work in CI users found that spectral and temporal resolution correlates with speech-in-noise ability, but a large portion of variance remains unexplained. Recent work on normal-hearing listeners showed that the ability to group temporally and spectrally coherent tones in a complex auditory scene predicts speech-in-noise ability independently of the audiogram, highlighting a central mechanism for auditory scene analysis that contributes to speech-in-noise. The current study examined whether the auditory grouping ability also contributes to speech-in-noise understanding in CI users. DESIGN: Forty-seven post-lingually deafened CI users were tested with psychophysical measures of spectral and temporal resolution, a stochastic figure-ground task that depends on the detection of a figure by grouping multiple fixed frequency elements against a random background, and a sentence-in-noise measure. Multiple linear regression was used to predict sentence-in-noise performance from the other tasks. RESULTS: No co-linearity was found between any predictor variables. All three predictors (spectral and temporal resolution plus the figure-ground task) exhibited significant contribution in the multiple linear regression model, indicating that the auditory grouping ability in a complex auditory scene explains a further proportion of variance in CI users' speech-in-noise performance that was not explained by spectral and temporal resolution. CONCLUSION: Measures of cross-frequency grouping reflect an auditory cognitive mechanism that determines speech-in-noise understanding independently of cochlear function. Such measures are easily implemented clinically as predictors of CI success and suggest potential strategies for rehabilitation based on training with non-speech stimuli.


Subject(s)
Cochlear Implantation , Cochlear Implants , Speech Perception , Speech , Noise
5.
BMJ Open ; 13(12): e077022, 2023 12 09.
Article in English | MEDLINE | ID: mdl-38070886

ABSTRACT

OBJECTIVE: To establish a consensus on the structure and process of healthcare services for patients with concussion in England to facilitate better healthcare quality and patient outcome. DESIGN: This consensus study followed the modified Delphi methodology with five phases: participant identification, item development, two rounds of voting and a meeting to finalise the consensus statements. The predefined threshold for agreement was set at ≥70%. SETTING: Specialist outpatient services. PARTICIPANTS: Members of the UK Head Injury Network were invited to participate. The network consists of clinical specialists in head injury practising in emergency medicine, neurology, neuropsychology, neurosurgery, paediatric medicine, rehabilitation medicine and sports and exercise medicine in England. PRIMARY OUTCOME MEASURE: A consensus statement on the structure and process of specialist outpatient care for patients with concussion in England. RESULTS: 55 items were voted on in the first round. 29 items were removed following the first voting round and 3 items were removed following the second voting round. Items were modified where appropriate. A final 18 statements reached consensus covering 3 main topics in specialist healthcare services for concussion; care pathway to structured follow-up, prognosis and measures of recovery, and provision of outpatient clinics. CONCLUSIONS: This work presents statements on how the healthcare services for patients with concussion in England could be redesigned to meet their health needs. Future work will seek to implement these into the clinical pathway.


Subject(s)
Brain Concussion , Child , Humans , Brain Concussion/diagnosis , Brain Concussion/therapy , Prognosis , Critical Pathways , England , Delphi Technique , Delivery of Health Care
6.
Nat Commun ; 14(1): 6264, 2023 10 07.
Article in English | MEDLINE | ID: mdl-37805497

ABSTRACT

The human brain extracts meaning using an extensive neural system for semantic knowledge. Whether broadly distributed systems depend on or can compensate after losing a highly interconnected hub is controversial. We report intracranial recordings from two patients during a speech prediction task, obtained minutes before and after neurosurgical treatment requiring disconnection of the left anterior temporal lobe (ATL), a candidate semantic knowledge hub. Informed by modern diaschisis and predictive coding frameworks, we tested hypotheses ranging from solely neural network disruption to complete compensation by the indirectly affected language-related and speech-processing sites. Immediately after ATL disconnection, we observed neurophysiological alterations in the recorded frontal and auditory sites, providing direct evidence for the importance of the ATL as a semantic hub. We also obtained evidence for rapid, albeit incomplete, attempts at neural network compensation, with neural impact largely in the forms stipulated by the predictive coding framework, in specificity, and the modern diaschisis framework, more generally. The overall results validate these frameworks and reveal an immediate impact and capability of the human brain to adjust after losing a brain hub.


Subject(s)
Diaschisis , Semantics , Humans , Brain Mapping/methods , Magnetic Resonance Imaging , Temporal Lobe/surgery , Temporal Lobe/physiology
7.
Cereb Cortex ; 33(14): 9105-9116, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37246155

ABSTRACT

The perception of pitch is a fundamental percept, which is mediated by the auditory system, requiring the abstraction of stimulus properties related to the spectro-temporal structure of sound. Despite its importance, there is still debate as to the precise areas responsible for its encoding, which may be due to species differences or differences in the recording measures and choices of stimuli used in previous studies. Moreover, it was unknown whether the human brain contains pitch neurons and how distributed such neurons might be. Here, we present the first study to measure multiunit neural activity in response to pitch stimuli in the auditory cortex of intracranially implanted humans. The stimulus sets were regular-interval noise with a pitch strength that is related to the temporal regularity and a pitch value determined by the repetition rate and harmonic complexes. Specifically, we demonstrate reliable responses to these different pitch-inducing paradigms that are distributed throughout Heschl's gyrus, rather than being localized to a particular region, and this finding was evident regardless of the stimulus presented. These data provide a bridge across animal and human studies and aid our understanding of the processing of a critical percept associated with acoustic stimuli.


Subject(s)
Auditory Cortex , Animals , Humans , Auditory Cortex/physiology , Pitch Perception/physiology , Acoustic Stimulation , Brain Mapping , Evoked Potentials, Auditory/physiology , Auditory Perception
8.
Ear Hear ; 44(5): 1107-1120, 2023.
Article in English | MEDLINE | ID: mdl-37144890

ABSTRACT

OBJECTIVES: Understanding speech-in-noise (SiN) is a complex task that recruits multiple cortical subsystems. Individuals vary in their ability to understand SiN. This cannot be explained by simple peripheral hearing profiles, but recent work by our group ( Kim et al. 2021 , Neuroimage ) highlighted central neural factors underlying the variance in SiN ability in normal hearing (NH) subjects. The present study examined neural predictors of SiN ability in a large cohort of cochlear-implant (CI) users. DESIGN: We recorded electroencephalography in 114 postlingually deafened CI users while they completed the California consonant test: a word-in-noise task. In many subjects, data were also collected on two other commonly used clinical measures of speech perception: a word-in-quiet task (consonant-nucleus-consonant) word and a sentence-in-noise task (AzBio sentences). Neural activity was assessed at a vertex electrode (Cz), which could help maximize eventual generalizability to clinical situations. The N1-P2 complex of event-related potentials (ERPs) at this location were included in multiple linear regression analyses, along with several other demographic and hearing factors as predictors of SiN performance. RESULTS: In general, there was a good agreement between the scores on the three speech perception tasks. ERP amplitudes did not predict AzBio performance, which was predicted by the duration of device use, low-frequency hearing thresholds, and age. However, ERP amplitudes were strong predictors for performance for both word recognition tasks: the California consonant test (which was conducted simultaneously with electroencephalography recording) and the consonant-nucleus-consonant (conducted offline). These correlations held even after accounting for known predictors of performance including residual low-frequency hearing thresholds. In CI-users, better performance was predicted by an increased cortical response to the target word, in contrast to previous reports in normal-hearing subjects in whom speech perception ability was accounted for by the ability to suppress noise. CONCLUSIONS: These data indicate a neurophysiological correlate of SiN performance, thereby revealing a richer profile of an individual's hearing performance than shown by psychoacoustic measures alone. These results also highlight important differences between sentence and word recognition measures of performance and suggest that individual differences in these measures may be underwritten by different mechanisms. Finally, the contrast with prior reports of NH listeners in the same task suggests CI-users performance may be explained by a different weighting of neural processes than NH listeners.


Subject(s)
Cochlear Implantation , Cochlear Implants , Speech Perception , Humans , Speech , Individuality , Noise , Speech Perception/physiology
9.
Cell Rep ; 42(5): 112422, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37099422

ABSTRACT

Humans use predictions to improve speech perception, especially in noisy environments. Here we use 7-T functional MRI (fMRI) to decode brain representations of written phonological predictions and degraded speech signals in healthy humans and people with selective frontal neurodegeneration (non-fluent variant primary progressive aphasia [nfvPPA]). Multivariate analyses of item-specific patterns of neural activation indicate dissimilar representations of verified and violated predictions in left inferior frontal gyrus, suggestive of processing by distinct neural populations. In contrast, precentral gyrus represents a combination of phonological information and weighted prediction error. In the presence of intact temporal cortex, frontal neurodegeneration results in inflexible predictions. This manifests neurally as a failure to suppress incorrect predictions in anterior superior temporal gyrus and reduced stability of phonological representations in precentral gyrus. We propose a tripartite speech perception network in which inferior frontal gyrus supports prediction reconciliation in echoic memory, and precentral gyrus invokes a motor model to instantiate and refine perceptual predictions for speech.


Subject(s)
Motor Cortex , Speech , Humans , Speech/physiology , Brain Mapping , Frontal Lobe/physiology , Brain , Temporal Lobe , Magnetic Resonance Imaging/methods
11.
Schizophr Bull ; 49(12 Suppl 2): S33-S40, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36840541

ABSTRACT

BACKGROUND AND HYPOTHESIS: Patients with hearing impairment (HI) may experience hearing sounds without external sources, ranging from random meaningless noises (tinnitus) to music and other auditory hallucinations (AHs) with meaningful qualities. To ensure appropriate assessment and management, clinicians need to be aware of these phenomena. However, sensory impairment studies have shown that such clinical awareness is low. STUDY DESIGN: An online survey was conducted investigating awareness of AHs among clinicians and their opinions about these hallucinations. STUDY RESULTS: In total, 125 clinicians (68.8% audiologists; 18.4% Ear-Nose-Throat [ENT] specialists) across 10 countries participated in the survey. The majority (96.8%) was at least slightly aware of AHs in HI. About 69.6% of participants reported encountering patients with AHs less than once every 6 months in their clinic. Awareness was significantly associated with clinicians' belief that patients feel anxious about their hallucinations (ß = .018, t(118) = 2.47, P < .01), their belief that clinicians should be more aware of these hallucinations (ß =.018, t(118) = 2.60, P < .01), and with confidence of clinicians in their skills to assess them (ß = .017, t(118) = 2.63, P < .01). Clinicians felt underequipped to treat AHs (Median = 31; U = 1838; PFDRadj < .01). CONCLUSIONS: Awareness of AHs among the surveyed clinicians was high. Yet, the low frequency of encounters with hallucinating patients and their belief in music as the most commonly perceived sound suggest unreported cases. Clinicians in this study expressed a lack of confidence regarding the assessment and treatment of AHs and welcome more information.


Subject(s)
Disabled Persons , Hearing Loss , Humans , Hallucinations , Emotions , Anxiety
12.
Front Neurosci ; 17: 1077344, 2023.
Article in English | MEDLINE | ID: mdl-36824211

ABSTRACT

Problems with speech-in-noise (SiN) perception are extremely common in hearing loss. Clinical tests have generally been based on measurement of SiN. My group has developed an approach to SiN based on the auditory cognitive mechanisms that subserve this, that might be relevant to speakers of any language. I describe how well these predict SiN, the brain systems for them, and tests of auditory cognition based on them that might be used to characterise SiN deficits in the clinic.

13.
Neuroscientist ; : 10738584221126090, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36169300

ABSTRACT

Sensory loss in olfaction, vision, and hearing is a risk factor for dementia, but the reasons for this are unclear. This review presents the neurobiological evidence linking each sensory modality to specific dementias and explores the potential mechanisms underlying this. Olfactory deficits can be linked to direct neuropathologic changes in the olfactory system due to Alzheimer disease and Parkinson disease, and may be a marker of disease severity. Visual deficits potentially increase dementia risk in a vulnerable individual by reducing resilience to dementia. Hearing deficits may indicate a susceptibility to Alzheimer disease through a variety of mechanisms. More generally, sensory impairment could be related to factors associated with resilience against dementia. Further research is needed to tease out the specific and synergistic effects of sensory impairment. Studying sensory loss in relation to neurodegenerative biomarkers is necessary to clarify the mechanisms involved. This could produce new monitoring and management strategies for people at risk of dementia.

14.
Elife ; 112022 09 27.
Article in English | MEDLINE | ID: mdl-36164823

ABSTRACT

A new imaging method reveals previously undetected structural differences that may contribute to developmental language disorder.


Subject(s)
Brain Mapping , Brain , Brain Mapping/methods , Magnetic Resonance Imaging/methods
15.
J Acoust Soc Am ; 152(1): 31, 2022 07.
Article in English | MEDLINE | ID: mdl-35931555

ABSTRACT

Pitch discrimination is better for complex tones than pure tones, but how pitch discrimination differs between natural and artificial sounds is not fully understood. This study compared pitch discrimination thresholds for flat-spectrum harmonic complex tones with those for natural sounds played by musical instruments of three different timbres (violin, trumpet, and flute). To investigate whether natural familiarity with sounds of particular timbres affects pitch discrimination thresholds, this study recruited non-musicians and musicians who were trained on one of the three instruments. We found that flautists and trumpeters could discriminate smaller differences in pitch for artificial flat-spectrum tones, despite their unfamiliar timbre, than for sounds played by musical instruments, which are regularly heard in everyday life (particularly by musicians who play those instruments). Furthermore, thresholds were no better for the instrument a musician was trained to play than for other instruments, suggesting that even extensive experience listening to and producing sounds of particular timbres does not reliably improve pitch discrimination thresholds for those timbres. The results show that timbre familiarity provides minimal improvements to auditory acuity, and physical acoustics (e.g., the presence of equal-amplitude harmonics) determine pitch discrimination thresholds more than does experience with natural sounds and timbre-specific training.


Subject(s)
Music , Pitch Discrimination , Auditory Perception , Discrimination, Psychological , Pitch Perception , Recognition, Psychology
16.
Echo Res Pract ; 9(1): 5, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35820954

ABSTRACT

Transthoracic echocardiography (TTE) is widely utilised within many aspects of clinical practice, as such the demand placed on echocardiography services is ever increasing. In an attempt to provide incremental value for patients and standardise patient care, the British Society of Echocardiography in collaboration with the British Heart Valve Society have devised updated guidance for the indications and triaging of adult TTE requests for TTE services to implement into clinical practice.

17.
Prog Neurobiol ; 218: 102326, 2022 11.
Article in English | MEDLINE | ID: mdl-35870677

ABSTRACT

The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information - whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia.


Subject(s)
Auditory Cortex , Hippocampus , Auditory Perception/physiology , Cognition , Hearing , Hippocampus/physiology , Humans , Learning/physiology
18.
Hear Res ; 422: 108524, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35691269

ABSTRACT

Speech-in-noise difficulty is commonly reported among hearing-impaired individuals. Recent work has established generic behavioural measures of sound segregation and grouping that are related to speech-in-noise processing but do not require language. In this study, we assessed potential clinical electroencephalographic (EEG) measures of central auditory grouping (stochastic figure-ground test) and speech-in-noise perception (speech-in-babble test) with and without relevant tasks. Auditory targets were presented within background noise (16 talker-babble or randomly generated pure-tones) in 50% of the trials and composed either a figure (pure-tone frequency chords repeating over time) or speech (English names), while the rest of the trials only had background noise. EEG was recorded while participants were presented with the target stimuli (figure or speech) under different attentional states (relevant task or visual-distractor task). EEG time-domain analysis demonstrated enhanced negative responses during detection of both types of auditory targets within the time window 150-350 ms but only figure detection produced significantly enhanced responses under the distracted condition. Further single-channel analysis showed that simple vertex-to-mastoid acquisition defines a very similar response to more complex arrays based on multiple channels. Evoked-potentials to the generic figure-ground task therefore represent a potential clinical measure of grouping relevant to real-world listening that can be assessed irrespective of language knowledge and expertise even without a relevant task.


Subject(s)
Noise , Speech Perception , Auditory Perception , Electroencephalography , Hearing , Humans , Noise/adverse effects , Speech Perception/physiology
19.
Echo Res Pract ; 9(1): 1, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35659315

ABSTRACT

BACKGROUND: Patients with prosthetic heart valves (PHV) require long-term follow-up, usually within a physiologist led heart valve surveillance clinic. These clinics are well established providing safe and effective patient care. The disruption of the COVID-19 pandemic on services has increased wait times thus we undertook a service evaluation to better understand the patients currently within the service and PHV related complications. METHODS: A clinical service evaluation of the heart valve surveillance clinic was undertaken to assess patient demographics, rates of complications and patient outcomes in patients who had undergone a PHV intervention at our institute between 2010 and 2020. RESULTS: A total of 294 patients (mean age at time of PHV intervention: 71 ± 12 years, 68.7% male) were included in this service evaluation. Follow-up was 5.9 ± 2.7 years (range: 10 years). 37.1% underwent baseline transthoracic echo (TTE) assessment and 83% underwent annual TTE follow-up. Significant valve related complications were reported in 20 (6.8%) patients. Complications included a change in patient functional status secondary to significant PHV regurgitation (0.3%) or stenosis (0.3%), PHV thrombosis (0.3%) or infective endocarditis (3.7%). Significant valve related complications resulted in ten hospital admission (3.4%), two re-do interventions (0.6%), and four deaths (1.3%). CONCLUSIONS: This service evaluation highlights the large number of patients requiring ongoing surveillance. Only a small proportion of patients develop significant PHV related complications resulting in a low incidence of re-do interventions and deaths.

20.
Sci Rep ; 12(1): 3517, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241747

ABSTRACT

Previous studies have found conflicting results between individual measures related to music and fundamental aspects of auditory perception and cognition. The results have been difficult to compare because of different musical measures being used and lack of uniformity in the auditory perceptual and cognitive measures. In this study we used a general construct of musicianship, musical sophistication, that can be applied to populations with widely different backgrounds. We investigated the relationship between musical sophistication and measures of perception and working memory for sound by using a task suitable to measure both. We related scores from the Goldsmiths Musical Sophistication Index to performance on tests of perception and working memory for two acoustic features-frequency and amplitude modulation. The data show that musical sophistication scores are best related to working memory for frequency in an analysis that accounts for age and non-verbal intelligence. Musical sophistication was not significantly associated with working memory for amplitude modulation rate or with the perception of either acoustic feature. The work supports a specific association between musical sophistication and working memory for sound frequency.


Subject(s)
Memory, Short-Term , Music , Acoustic Stimulation , Auditory Perception , Cognition , Music/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...