Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Cells ; 13(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38667309

ABSTRACT

Variants of mitochondrial DNA (mtDNA) have been identified as risk factors for the development of Parkinson's disease (PD). However, the underlying pathogenetic mechanisms remain unclear. Cybrid models carrying various genotypes of mtDNA variants were tested for resistance to PD-simulating MPP+ treatment. The most resistant line was selected for transcriptome profiling, revealing specific genes potentially influencing the resistant characteristic. We then conducted protein validation and molecular biological studies to validate the related pathways as the influential factor. Cybrids carrying the W3 mtDNA haplogroup demonstrated the most resistance to the MPP+ treatment. In the transcriptome study, PPP1R15A was identified, while further study noted elevated expressions of the coding protein GADD34 across all cybrids. In the study of GADD34-related mitochondrial unfolding protein response (mtUPR), we found that canonical mtUPR, launched by the phosphate eIF2a, is involved in the resistant characteristic of specific mtDNA to MPP+ treatment. Our study suggests that a lower expression of GADD34 in the late phase of mtUPR may prolong the mtUPR process, thereby benefitting protein homeostasis and facilitating cellular resistance to PD development. We herein demonstrate that GADD34 plays an important role in PD development and should be further investigated as a target for the development of therapies for PD.


Subject(s)
DNA, Mitochondrial , Haplotypes , Parkinson Disease , Parkinson Disease/genetics , Humans , DNA, Mitochondrial/genetics , Haplotypes/genetics , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Unfolded Protein Response/genetics
2.
Orphanet J Rare Dis ; 18(1): 307, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37784170

ABSTRACT

BACKGROUND: Mitochondrial Diseases (MDs) are a diverse group of neurometabolic disorders characterized by impaired mitochondrial oxidative phosphorylation and caused by pathogenic variants in more than 400 genes. The implementation of next-generation sequencing (NGS) technologies helps to increase the understanding of molecular basis and diagnostic yield of these conditions. The purpose of the study was to investigate diagnostic and genotypic spectrum in patients with suspected MD. The comprehensive analysis of mtDNA variants using Sanger sequencing was performed in the group of 83 unrelated individuals with clinically suspected mitochondrial disease. Additionally, targeted next generation sequencing or whole exome sequencing (WES) was performed for 30 patients of the study group. RESULTS: The overall diagnostic rate was 21.7% for the patients with suspected MD, increasing to 36.7% in the group of patients where NGS methods were applied. Mitochondrial disease was confirmed in 11 patients (13.3%), including few classical mitochondrial syndromes (MELAS, MERRF, Leigh and Kearns-Sayre syndrome) caused by pathogenic mtDNA variants (8.4%) and MDs caused by pathogenic variants in five nDNA genes. Other neuromuscular diseases caused by pathogenic variants in seven nDNA genes, were confirmed in seven patients (23.3%). CONCLUSION: The wide spectrum of identified rare mitochondrial or neurodevelopmental diseases proves that MD suspected patients would mostly benefit from an extensive genetic profiling allowing rapid diagnostics and improving the care of these patients.


Subject(s)
Mitochondrial Diseases , Humans , Mutation , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , DNA, Mitochondrial/genetics , Mitochondria/genetics , Genotype
3.
Neurol Genet ; 9(3): e200068, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37057294

ABSTRACT

Objectives: To describe clinical and genetic findings in 2 siblings with slowly progressive ataxia. Methods: We studied 2 adult siblings through detailed physical and instrumental examinations. Whole-exome sequencing was used to identify an underlying genetic cause. Results: Both siblings presented with adolescence-onset ataxia, progressive sensorimotor polyneuropathy, and preserved cognition over time. The onset of symptoms was between 10 and 14 years of age. A brain MRI demonstrated mild cerebellar atrophy in the older brother at age 45 years. Exome sequencing revealed compound heterozygous loss-of-function variants c.2269del (p.(Thr757GlnfsTer10)) and c.2275_2276del (p.(Leu759AlafsTer4)) in PNPLA8. The novel variant c.2269del results in frameshift with a premature stop codon p.(Thr757GlnfsTer10) and loss of normal enzyme function. Discussion: Our findings support the theory that biallelic loss-of-function PNPLA8 variants are involved in neurodegenerative mitochondrial disease. Compared with patients previously described, these patients' phenotype may be interpreted as a milder phenotype associated with a slight progression of ataxia throughout adulthood.

4.
Mol Genet Genomic Med ; 11(1): e2059, 2023 01.
Article in English | MEDLINE | ID: mdl-36181358

ABSTRACT

BACKGROUND: Kearns-Sayre syndrome (KSS) is a rare multisystem mitochondrial disorder characterized by onset before 20 years of age and a typical clinical triad: progressive external ophthalmoplegia, pigmentary retinopathy and cardiac conduction anomalies. In most cases KSS is caused by spontaneous heteroplasmic single large-scale mitochondrial DNA (mtDNA) deletions. Long-range polymerase chain reaction (LR-PCR), next generation sequencing (NGS) and multiplex ligation-dependent probe amplification (MLPA) are the most widely applied methods for the identification of mtDNA deletions. Here, we report the case of 20-year-old male who presented with classic Kearns-Sayre syndrome, confirmed by novel 5,9 kb mtDNA deletion. METHODS AND RESULTS: LR-PCR and MLPA methods were applied to identify the mitochondrial DNA deletion for the patient, but the results were conflicting. Molecular analysis using primer walking and Sanger sequencing identified a novel 5888 base pairs mtDNA deletion (NC_012920.1:m.6069_11956del) with CAAC nucleotides repeat sequence at the breakpoints. CONCLUSION: Our study enriched the mtDNA variation spectrum associated with KSS and demonstrated the importance of choosing relevant molecular genetic methods.


Subject(s)
Kearns-Sayre Syndrome , Ophthalmoplegia, Chronic Progressive External , Male , Humans , Young Adult , Adult , Kearns-Sayre Syndrome/genetics , Gene Deletion , Ophthalmoplegia, Chronic Progressive External/genetics , DNA, Mitochondrial/genetics , Multiplex Polymerase Chain Reaction
5.
Orphanet J Rare Dis ; 17(1): 374, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36242072

ABSTRACT

BACKGROUND: Recessive loss-of-function variations in HINT1 cause a peculiar subtype of Charcot-Marie-Tooth disease: neuromyotonia and axonal neuropathy (NMAN; OMIM[#137200]). With 25 causal variants identified worldwide, HINT1 mutations are among the most common causes of recessive neuropathy. The majority of patients are compound heterozygous or homozygous for a Slavic founder variant (c.110G>C, p.Arg37Pro) that has spread throughout Eurasia and America. RESULTS: In a cohort of 46 genetically unresolved Lithuanian patients with suspected inherited neuropathy, we identified eight families with HINT1 biallelic variations. Most patients displayed sensorimotor or motor-predominant axonal polyneuropathy and were homozygous for the p.Arg37Pro variant. However, in three families we identified a novel variant (c.299A>G, p.Glu100Gly). The same variant was also found in an American patient with distal hereditary motor neuropathy in compound heterozygous state (p.Arg37Pro/p.Glu100Gly). Haplotype analysis demonstrated a shared chromosomal region of 1.9 Mb between all p.Glu100Gly carriers, suggesting a founder effect. Functional characterization showed that the p.Glu100Gly variant renders a catalytically active enzyme, yet highly unstable in patient cells, thus supporting a loss-of-function mechanism. CONCLUSION: Our findings broaden NMAN's genetic epidemiology and have implications for the molecular diagnostics of inherited neuropathies in the Baltic region and beyond. Moreover, we provide mechanistic insights allowing patient stratification for future treatment strategies.


Subject(s)
Charcot-Marie-Tooth Disease , Isaacs Syndrome , Charcot-Marie-Tooth Disease/genetics , Heterozygote , Humans , Isaacs Syndrome/genetics , Lithuania/epidemiology , Mutation/genetics , Nerve Tissue Proteins/genetics
6.
Acta Med Litu ; 29(2): 225-235, 2022.
Article in English | MEDLINE | ID: mdl-37733426

ABSTRACT

Background and Objectives: The most effective treatment of infertility is in vitro fertilization (IVF). IVF with Preimplantation Genetic Testing (PGT) allows to identify embryos with a genetic abnormality associated with a specific medical disorder and to select the most optimal embryos for the transfer. PGT is divided into structural rearrangement testing (PGT-SR), monogenetic disorder testing (PGT-M), and aneuploidy testing (PGT-A). This study mostly analyzes PGT-SR, also describes a few cases of PGT-M. The aim of this study was to implement PGT procedure at Vilnius University Hospital Santaros Klinikos (VUHSK) Santaros Fertility Centre (SFC) and to perform retrospective analysis of PGT procedures after the implementation. Materials and Methods: A single-center retrospective analysis was carried out. The study population included infertile couples who underwent PGT at SFC, VUHSK from January 01st, 2017 to December 31st, 2020. Ion PGM platform (Life Technologies, USA) and Ion ReproSeq PGS View Kit (Life Technologies, USA) were used for the whole genome amplification. Results were assessed using descriptive statistics. Results: PGT was successfully implemented in VUHSK in 2017. During the analyzed time period, thirty-four PGT procedures were performed for 26 couples. Two procedures were performed in 2017, 7 procedures - in 2018, 13 - in 2019, and 12 - in 2020. In comparison with all IVF procedures, 2.5% procedures were IVF with PGT, a highest percentage was in 2020 (3.8% of all procedures). The main indication for PGT was balanced chromosomal rearrangements (in 85.3% cases). In all 34 cases 515 oocytes were aspirated in total, 309 oocytes were fertilized, oocytes fertilization rate exceeded 60%. A normal diploid karyotype was found in 46 (16.8%) biopsied embryos. Out of all PGT procedures, 9 (26.5%) resulted in a clinical pregnancy. Six (66.7%) pregnancies were confirmed in 2019, and 3 (33.3%) - in 2020. Three (33.3%) pregnancies resulted in spontaneous abortion, 6 (66.7%) - in delivery. Conclusions: The implementation of PGT in VUHSK was successful. The most common indication for PGT was a reciprocal translocation. Oocytes fertilization rate exceeded 60%, a normal karyotype was found less than in one-fifth of biopsied embryos. A highest clinical pregnancy rate was achieved in 2019 when almost half of women conceived, which is probably related to the experience gained by the multidisciplinary team. This is the first study analyzing IVF with PGT in Lithuania, however, the results should be interpreted with caution due to a low number of total procedures performed.

7.
Medicina (Kaunas) ; 57(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34684072

ABSTRACT

Background and Objectives: The main reason for Newborn screening (NBS) for congenital adrenal hyperplasia (CAH) is to prevent adrenal insufficiency that can lead to life-threatening conditions. On the other hand, screening programs are not always sensitive and effective enough to detect the disease. We aimed to evaluate impact of the national NBS on the clinical presentation of patients with CAH in Lithuania. Materials and Methods: A retrospective study was performed on data of 88 patients with CAH from 1989 to 2020. Patients with confirmed CAH were divided into two groups: (1) 75 patients diagnosed before NBS: 52 cases with salt-wasting (SW), 21 with simple virilising (SV) and two with non-classical (NC) form; (2) 13 patients diagnosed with NBS: 12 cases with SW and 1 case with SV form. For the evaluation of NBS effectiveness, data of only male infants with salt-wasting CAH were analysed (n = 36, 25 unscreened and nine screened). Data on gestational age, birth weight, weight, symptoms, and laboratory tests (serum potassium and sodium levels) on the day of diagnosis, were analysed. Results: A total of 158,486 neonates were screened for CAH from 2015 to 2020 in Lithuania and CAH was confirmed in 13 patients (12 SW, one-SV form), no false negative cases were found. The sensitivity and specificity of NBS program for classical CAH forms were 100%; however, positive predictive value was only 4%. There were no significant differences between unscreened and screened male infant groups in terms of age at diagnosis, serum potassium, and serum sodium levels. Significant differences were found in weight at diagnosis between the groups (-1.67 ± 1.12 SDS versus 0.046 ± 1.01 SDS of unscreened and screened patients respectively, p = 0.001). Conclusions: The sensitivity and specificity of NBS for CAH program were 100%, but positive predictive value-only 4%. Weight loss was significantly lower and the weight SDS at diagnosis was significantly higher in the group of screened patients.


Subject(s)
Adrenal Hyperplasia, Congenital , Adrenal Hyperplasia, Congenital/diagnosis , Adrenal Hyperplasia, Congenital/epidemiology , Birth Weight , Humans , Infant , Infant, Newborn , Male , Neonatal Screening , Retrospective Studies , Sensitivity and Specificity
8.
Acta Med Litu ; 28(2): 308-316, 2021.
Article in English | MEDLINE | ID: mdl-35474932

ABSTRACT

Kidney cysts are the most common kidney lesion, while congenital kidney cysts are mostly found in pediatric population. Neonatal kidney cysts can develop due to fetal malformations, rare genetic disorders or can be acquired which is very rare. Kidney cysts may be the only isolated finding or be part of the overall phenotype. They can be asymptomatic, found by ultrasound accidentally or can manifest from mild to life-threatening symptoms. Therefore, early diagnosis is very important. Autosomal dominant polycystic kidney disease and autosomal recessive polycystic kidney disease are the most common causes of kidney cysts in the neonatal population. This review highlights the most common kidney cystic diseases during the neonatal period and a rare clinical case of HNF1B-associated disease.

9.
Mitochondrial DNA A DNA Mapp Seq Anal ; 29(7): 1115-1120, 2018 10.
Article in English | MEDLINE | ID: mdl-29228836

ABSTRACT

The most common mitochondrial disorder in children is Leigh syndrome, which is a progressive and genetically heterogeneous neurodegenerative disorder caused by mutations in nuclear genes or mitochondrial DNA (mtDNA). In the present study, a novel and robust method of complete mtDNA sequencing, which allows amplification of the whole mitochondrial genome, was tested. Complete mtDNA sequencing was performed in a cohort of patients with suspected mitochondrial mutations. Patients from Latvia and Lithuania (n = 92 and n = 57, respectively) referred by clinical geneticists were included. The de novo point mutations m.9185T>C and m.13513G>A, respectively, were detected in two patients with lactic acidosis and neurodegenerative lesions. In one patient with neurodegenerative lesions, the mutation m.9185T>C was identified. These mutations are associated with Leigh syndrome. The present data suggest that full-length mtDNA sequencing is recommended as a supplement to nuclear gene testing and enzymatic assays to enhance mitochondrial disease diagnostics.


Subject(s)
DNA, Mitochondrial/genetics , Leigh Disease/genetics , Mutation , Child, Preschool , Female , Humans , Infant , Leigh Disease/pathology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...