Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 133(9)2023 05 01.
Article in English | MEDLINE | ID: mdl-36853799

ABSTRACT

Multiple sclerosis (MS) is a complex disease of the CNS thought to require an environmental trigger. Gut dysbiosis is common in MS, but specific causative species are unknown. To address this knowledge gap, we used sensitive and quantitative PCR detection to show that people with MS were more likely to harbor and show a greater abundance of epsilon toxin-producing (ETX-producing) strains of C. perfringens within their gut microbiomes compared with individuals who are healthy controls (HCs). Isolates derived from patients with MS produced functional ETX and had a genetic architecture typical of highly conjugative plasmids. In the active immunization model of experimental autoimmune encephalomyelitis (EAE), where pertussis toxin (PTX) is used to overcome CNS immune privilege, ETX can substitute for PTX. In contrast to PTX-induced EAE, where inflammatory demyelination is largely restricted to the spinal cord, ETX-induced EAE caused demyelination in the corpus callosum, thalamus, cerebellum, brainstem, and spinal cord, more akin to the neuroanatomical lesion distribution seen in MS. CNS endothelial cell transcriptional profiles revealed ETX-induced genes that are known to play a role in overcoming CNS immune privilege. Together, these findings suggest that ETX-producing C. perfringens strains are biologically plausible pathogens in MS that trigger inflammatory demyelination in the context of circulating myelin autoreactive lymphocytes.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Gastrointestinal Microbiome , Multiple Sclerosis , Animals , Humans , Clostridium perfringens/genetics , Multiple Sclerosis/genetics , Immune Privilege , Lymphocytes
2.
Nature ; 600(7890): 707-712, 2021 12.
Article in English | MEDLINE | ID: mdl-34853467

ABSTRACT

Pro-inflammatory T cells in the central nervous system (CNS) are causally associated with multiple demyelinating and neurodegenerative diseases1-6, but the pathways that control these responses remain unclear. Here we define a population of inflammatory group 3 innate lymphoid cells (ILC3s) that infiltrate the CNS in a mouse model of multiple sclerosis. These ILC3s are derived from the circulation, localize in proximity to infiltrating T cells in the CNS, function as antigen-presenting cells that restimulate myelin-specific T cells, and are increased in individuals with multiple sclerosis. Notably, antigen presentation by inflammatory ILC3s is required to promote T cell responses in the CNS and the development of multiple-sclerosis-like disease in mouse models. By contrast, conventional and tissue-resident ILC3s in the periphery do not appear to contribute to disease induction, but instead limit autoimmune T cell responses and prevent multiple-sclerosis-like disease when experimentally targeted to present myelin antigen. Collectively, our data define a population of inflammatory ILC3s that is essential for directly promoting T-cell-dependent neuroinflammation in the CNS and reveal the potential of harnessing peripheral tissue-resident ILC3s for the prevention of autoimmune disease.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Antigen-Presenting Cells , Antigens/metabolism , Immunity, Innate , Lymphocytes , Mice , Neuroinflammatory Diseases , Sclerosis/metabolism
3.
Vaccine ; 35(15): 1964-1971, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28279563

ABSTRACT

Vaccine adjuvants are essential to drive a protective immune response in cases where vaccine antigens are weakly immunogenic, where vaccine antigen is limited, or where an increase in potency is needed for a specific population, such as the elderly. To discover novel vaccine adjuvants, we used a high-throughput screen (HTS) designed to identify small-molecule agonists of the RIG-I-like receptor (RLR) pathway leading to interferon regulatory factor 3 (IRF3) activation. RLRs are a group of cytosolic pattern-recognition receptors that are essential for the recognition of viral nucleic acids during infection. Upon binding of viral nucleic acid ligands, the RLRs become activated and signal to transcription factors, including IRF3, to initiate an innate immune transcriptional program to control virus infection. Among our HTS hits were a series of benzothiazole compounds from which we designed the lead analog, KIN1148. KIN1148 induced dose-dependent IRF3 nuclear translocation and specific activation of IRF3-responsive promoters. Prime-boost immunization of mice with a suboptimal dose of a monovalent pandemic influenza split virus H1N1 A/California/07/2009 vaccine plus KIN1148 protected against a lethal challenge with mouse-adapted influenza virus (A/California/04/2009) and induced an influenza virus-specific IL-10 and Th2 response by T cells derived from lung and lung-draining lymph nodes. Prime-boost immunization with vaccine plus KIN1148, but not prime immunization alone, induced antibodies capable of inhibiting influenza virus hemagglutinin and neutralizing viral infectivity. Nevertheless, a single immunization with vaccine plus KIN1148 provided increased protection over vaccine alone and reduced viral load in the lungs after challenge. These findings suggest that protection was at least partially mediated by a cellular immune component and that the induction of Th2 and immunoregulatory cytokines by a KIN1148-adjuvanted vaccine may be particularly beneficial for ameliorating the immunopathogenesis that is associated with influenza viruses.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Benzothiazoles/administration & dosage , DEAD Box Protein 58/metabolism , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Interferon Regulatory Factor-3/metabolism , Adjuvants, Immunologic/isolation & purification , Animals , Benzothiazoles/isolation & purification , Cell Line , Disease Models, Animal , Drug Evaluation, Preclinical , Female , High-Throughput Screening Assays , Humans , Mice, Inbred C57BL , Orthomyxoviridae Infections/prevention & control , Receptors, Immunologic , Survival Analysis
4.
J Immunol ; 198(2): 564-571, 2017 01 15.
Article in English | MEDLINE | ID: mdl-28069751

ABSTRACT

Recent advances in understanding how the mammalian immune system and intestinal microbiota functionally interact have yielded novel insights for human health and disease. Modern technologies to quantitatively measure specific members and functional characteristics of the microbiota in the gastrointestinal tract, along with fundamental and emerging concepts in the field of immunology, have revealed numerous ways in which host-microbiota interactions proceed beneficially, neutrally, or detrimentally for mammalian hosts. It is clear that the gut microbiota has a strong influence on the shape and quality of the immune system; correspondingly, the immune system guides the composition and localization of the microbiota. In the following review, we examine the evidence that these interactions encompass homeostasis and inflammation in the intestine and, in certain cases, extraintestinal tissues. Lastly, we discuss translational therapies stemming from research on host-microbiota interactions that could be used for the treatment of chronic inflammatory diseases.


Subject(s)
Gastrointestinal Microbiome/immunology , Homeostasis/immunology , Immune System , Inflammation/microbiology , Animals , Humans , Inflammation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...