Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Adv Mater ; 35(41): e2300305, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37572376

ABSTRACT

3D organoids are widely used as tractable in vitro models capable of elucidating aspects of human development and disease. However, the manual and low-throughput culture methods, coupled with a low reproducibility and geometric heterogeneity, restrict the scope and application of organoid research. Combining expertise from stem cell biology and bioengineering offers a promising approach to address some of these limitations. Here, melt electrospinning writing is used to generate tuneable grid scaffolds that can guide the self-organization of pluripotent stem cells into patterned arrays of embryoid bodies. Grid geometry is shown to be a key determinant of stem cell self-organization, guiding the position and size of emerging lumens via curvature-controlled tissue growth. Two distinct methods for culturing scaffold-grown embryoid bodies into either interconnected or spatially discrete cerebral organoids are reported. These scaffolds provide a high-throughput method to generate, culture, and analyze large numbers of organoids, substantially reducing the time investment and manual labor involved in conventional methods of organoid culture. It is anticipated that this methodological development will open up new opportunities for guiding pluripotent stem cell culture, studying lumenogenesis, and generating large numbers of uniform organoids for high-throughput screening.


Subject(s)
Organoids , Pluripotent Stem Cells , Humans , Reproducibility of Results , Brain
2.
Adv Healthc Mater ; 12(27): e2301148, 2023 10.
Article in English | MEDLINE | ID: mdl-37169351

ABSTRACT

The development of near-infrared light responsive conductive polymers provides a useful theranostic platform for malignant tumors by maximizing spatial resolution with deep tissue penetration for diagnosis and photothermal therapy. Herein, the self-assembly of ultrathin 2D polypyrrole nanosheets utilizing dopamine as a capping agent and a monolayer of octadecylamine as a template is demonstrated. The 2D polypyrrole-polydopamine nanostructure has tunable size distribution which shows strong absorption in the first and second near-infrared windows, enabling photoacoustic imaging and photothermal therapy. The hybrid double-layer is demonstrated to increase Raman intensity for 3D Raman imaging (up to two orders of magnitude enhancement and spatial resolution up to 1 µm). The acidic environment drives reversible doping of polypyrrole, which can be detected by Raman spectroscopy. The combined properties of the nanosheets can substantially enhance performance in dual-mode Raman and photoacoustic guided photothermal therapy, as shown by the 69% light to heat conversion efficiency and higher cytotoxicity against cancer spheroids. These pH-responsive features highlight the potential of 2D conductive polymers for applications in accurate, highly efficient theranostics.


Subject(s)
Nanoparticles , Neoplasms , Photoacoustic Techniques , Humans , Polymers/chemistry , Photothermal Therapy , Phototherapy/methods , Pyrroles/pharmacology , Nanoparticles/chemistry , Photoacoustic Techniques/methods , Neoplasms/diagnostic imaging , Neoplasms/therapy , Theranostic Nanomedicine/methods
4.
Small ; 18(36): e2202303, 2022 09.
Article in English | MEDLINE | ID: mdl-35770803

ABSTRACT

Non-viral vectors represent versatile and immunologically safer alternatives for nucleic acid delivery. Nanoneedles and high-aspect ratio nanostructures are unconventional but interesting delivery systems, in which delivery is mediated by surface interactions. Herein, nanoneedles are synergistically combined with polysaccharide-polyplex nanofilms and enhanced transfection efficiency is observed, compared to polyplexes in suspension. Different polyplex-polyelectrolyte nanofilm combinations are assessed and it is found that transfection efficiency is enhanced when using polysaccharide-based polyanions, rather than being only specific for hyaluronic acid, as suggested in earlier studies. Moreover, results show that enhanced transfection is not mediated by interactions with the CD44 receptor, previously hypothesized as a major mechanism mediating enhancement via hyaluronate. In cardiac tissue, nanoneedles are shown to increase the transfection efficiency of nanofilms compared to flat substrates; while in vitro, high transfection efficiencies are observed in nanostructures where cells present large interfacing areas with the substrate. The results of this study demonstrate that surface-mediated transfection using this system is efficient and safe, requiring amounts of nucleic acid with an order of magnitude lower than standard culture transfection. These findings expand the spectrum of possible polyelectrolyte combinations that can be used for the development of suitable non-viral vectors for exploration in further clinical trials.


Subject(s)
Gene Transfer Techniques , Nucleic Acids , Genetic Therapy/methods , Polyelectrolytes , Transfection
5.
Biomater Sci ; 9(15): 5175-5191, 2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34128504

ABSTRACT

Nonviral direct neuronal reprogramming holds significant potential in the fields of tissue engineering and regenerative medicine. However, the issue of low reprogramming efficiency poses a major barrier to its application. We propose that topographical cues, which have been applied successfully to enhance lineage-directed differentiation and multipotent stem cell transdifferentiation, could improve nonviral direct neuronal reprogramming efficiency. To investigate, we used a polymer-BAM (Brn2, Ascl1, Myt1l) factor transfection polypex to reprogram primary mouse embryonic fibroblasts. Using a multiarchitecture chip, we screened for patterns that may improve transfection and/or subsequent induced neuron reprogramming efficiency. Selected patterns were then investigated further by analyzing ß-tubulin III (TUJ1) and microtubule-associated protein 2 (MAP2) protein expression, cell morphology and electrophysiological function of induced neurons. Certain hierarchical topographies, with nanopatterns imprinted on micropatterns, significantly improved the percentage of TUJ1+ and MAP2+ cells. It is postulated that the microscale base pattern enhances initial BAM expression while the nanoscale sub-pattern promotes subsequent maturation. This is because the base pattern alone increased expression of TUJ1 and MAP2, while the nanoscale pattern was the only pattern yielding induced neurons capable of firing multiple action potentials. Nanoscale patterns also produced the highest fraction of cells showing spontaneous synaptic activity. Overall, reprogramming efficiency with one dose of polyplex on hierarchical patterns was comparable to that of five doses without topography. Thus, topography can enhance nonviral direct reprogramming of fibroblasts into induced neurons.


Subject(s)
Cellular Reprogramming , Transcription Factors , Animals , Cell Differentiation , Fibroblasts , Mice , Neurons , Transcription Factors/genetics
6.
ACS Cent Sci ; 6(5): 695-703, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32490186

ABSTRACT

The recently discovered CRISPR-Cas gene editing system and its derivatives have found numerous applications in fundamental biology research and pharmaceutical sciences. The need for precise external control over the gene editing and regulatory events has driven the development of inducible CRISPR-Cas systems. While most of the light-controllable CRISPR-Cas systems are based on protein engineering, we developed an alternative synthetic approach based on modification of crRNA/tracrRNA duplex (guide RNA or gRNA) with photocaging groups, preventing the gRNA from recognizing its genome target sequence until its deprotection is induced within seconds of illumination. This approach relies on a straightforward solid-phase synthesis of the photocaged gRNAs, with simpler purification and characterization processes in comparison to engineering a light-responsive protein. We have demonstrated the feasibility of photocaging of gRNAs and light-mediated DNA cleavage upon brief exposure to light in vitro. We have achieved light-mediated spatiotemporally resolved gene editing as well as gene activation in cells, whereas photocaged gRNAs showed virtually no detectable gene editing or activation in the absence of light irradiation. Finally, we have applied this system to spatiotemporally control gene editing in zebrafish embryos in vivo, enabling the use of this strategy for developmental biology and tissue engineering applications.

7.
Cell Rep ; 31(5): 107601, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32375051

ABSTRACT

Liver X receptors (LXRs) and their ligands are potent regulators of midbrain dopaminergic (mDA) neurogenesis and differentiation. However, the molecular mechanisms by which LXRs control these functions remain to be elucidated. Here, we perform a combined transcriptome and chromatin immunoprecipitation sequencing (ChIP-seq) analysis of midbrain cells after LXR activation, followed by bioinformatic analysis to elucidate the transcriptional networks controlling mDA neurogenesis. Our results identify the basic helix-loop-helix transcription factor sterol regulatory element binding protein 1 (SREBP1) as part of a cluster of proneural transcription factors in radial glia and as a regulator of transcription factors controlling mDA neurogenesis, such as Foxa2. Moreover, loss- and gain-of-function experiments in vitro and in vivo demonstrate that Srebf1 is both required and sufficient for mDA neurogenesis. Our data, thus, identify Srebf1 as a central player in mDA neurogenesis.


Subject(s)
Cell Differentiation/physiology , Dopaminergic Neurons/metabolism , Neurogenesis/physiology , Sterol Regulatory Element Binding Protein 1/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Dopamine/metabolism , Gene Expression Regulation, Developmental/physiology , Humans , Mesencephalon/cytology , Nerve Tissue Proteins/metabolism
8.
ACS Nano ; 14(5): 5711-5727, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32267667

ABSTRACT

Self-amplifying RNA (saRNA) vaccines are highly advantageous, as they result in enhanced protein expression compared to mRNA (mRNA), thus minimizing the required dose. However, previous delivery strategies were optimized for siRNA or mRNA and do not necessarily deliver saRNA efficiently due to structural differences of these RNAs, thus motivating the development of saRNA delivery platforms. Here, we engineer a bioreducible, linear, cationic polymer called "pABOL" for saRNA delivery and show that increasing its molecular weight enhances delivery both in vitro and in vivo. We demonstrate that pABOL enhances protein expression and cellular uptake via both intramuscular and intradermal injection compared to commercially available polymers in vivo and that intramuscular injection confers complete protection against influenza challenge. Due to the scalability of polymer synthesis and ease of formulation preparation, we anticipate that this polymer is highly clinically translatable as a delivery vehicle for saRNA for both vaccines and therapeutics.


Subject(s)
Polymers , Cations , Molecular Weight , RNA, Messenger , RNA, Small Interfering
9.
Proc Natl Acad Sci U S A ; 117(6): 2978-2986, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31988126

ABSTRACT

Skeletal muscle cells contain hundreds of myonuclei within a shared cytoplasm, presenting unique challenges for regulating gene expression. Certain transcriptional programs (e.g., postsynaptic machinery) are segregated to specialized domains, while others (e.g., contractile proteins) do not show spatial confinement. Furthermore, local stimuli, such as denervation, can induce transcriptional responses that are propagated along the muscle cells. Regulated transport of nuclear proteins (e.g., transcription factors) between myonuclei represents a potential mechanism for coordinating gene expression. However, the principles underlying the transport of nuclear proteins within multinucleated cells remain poorly defined. Here we used a mosaic transfection model to create myotubes that contained exactly one myonucleus expressing a fluorescent nuclear reporter and monitored its distribution among all myonuclei. We found that the transport properties of these model nuclear proteins in myotubes depended on molecular weight and nuclear import rate, as well as on myotube width. Interestingly, muscle hypertrophy increased the transport of high molecular weight nuclear proteins, while atrophy restricted the transport of smaller nuclear proteins. We have developed a mathematical model of nuclear protein transport within a myotube that recapitulates the results of our in vitro experiments. To test the relevance to nuclear proteins expressed in skeletal muscle, we studied the transport of two transcription factors-aryl hydrocarbon receptor nuclear translocator and sine oculis homeobox 1-and found that their distributions were similar to the reporter proteins with corresponding molecular weights. Together, these results define a set of variables that can be used to predict the spatial distributions of nuclear proteins within a myotube.


Subject(s)
Muscle, Skeletal/metabolism , Myoblasts/metabolism , Nuclear Proteins/metabolism , Animals , Cells, Cultured , Homeodomain Proteins/chemistry , Homeodomain Proteins/metabolism , Kinetics , Mice , Muscle Fibers, Skeletal/chemistry , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/chemistry , Myoblasts/chemistry , Nuclear Proteins/chemistry , Protein Transport , Receptors, Aryl Hydrocarbon/chemistry , Receptors, Aryl Hydrocarbon/metabolism
10.
Adv Funct Mater ; 30(42): 2003710, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-34035794

ABSTRACT

The unique electrochemical properties of the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) make it an attractive material for use in neural tissue engineering applications. However, inadequate mechanical properties, and difficulties in processing and lack of biodegradability have hindered progress in this field. Here, the functionality of PEDOT:PSS for neural tissue engineering is improved by incorporating 3,4-ethylenedioxythiophene (EDOT) oligomers, synthesized using a novel end-capping strategy, into block co-polymers. By exploiting end-functionalized oligoEDOT constructs as macroinitiators for the polymerization of poly(caprolactone), a block co-polymer is produced that is electroactive, processable, and bio-compatible. By combining these properties, electroactive fibrous mats are produced for neuronal culture via solution electrospinning and melt electrospinning writing. Importantly, it is also shown that neurite length and branching of neural stem cells can be enhanced on the materials under electrical stimulation, demonstrating the promise of these scaffolds for neural tissue engineering.

11.
Nano Today ; 11(6): 778-792, 2016 Dec.
Article in English | MEDLINE | ID: mdl-30337950

ABSTRACT

Microfluidics expands the synthetic space such as heat transfer, mass transport, and reagent consumption to conditions not easily achievable in conventional batch processes. Hydrodynamic focusing in particular enables the generation and study of complex engineered nanostructures and new materials systems. In this review, we present an overview of recent progress in the synthesis of nanostructures and microfibers using microfluidic hydrodynamic focusing techniques. Emphasis is placed on distinct designs of flow focusing methods and their associated mechanisms, as well as their applications in material synthesis, determination of reaction kinetics, and study of synthetic mechanisms.

12.
ACS Nano ; 8(10): 10026-34, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25268035

ABSTRACT

Shape-controlled synthesis of nanomaterials through a simple, continuous, and low-cost method is essential to nanomaterials research toward practical applications. Hydrodynamic focusing, with its advantages of simplicity, low-cost, and precise control over reaction conditions, has been used for nanomaterial synthesis. While most studies have focused on improving the uniformity and size control, few have addressed the potential of tuning the shape of the synthesized nanomaterials. Here we demonstrate a facile method to synthesize hybrid materials by three-dimensional hydrodynamic focusing (3D-HF). While keeping the flow rates of the reagents constant and changing only the flow rate of the buffer solution, the molar ratio of two reactants (i.e., tetrathiafulvalene (TTF) and HAuCl4) within the reaction zone varies. The synthesized TTF-Au hybrid materials possess very different and predictable morphologies. The reaction conditions at different buffer flow rates are studied through computational simulation, and the formation mechanisms of different structures are discussed. This simple one-step method to achieve continuous shape-tunable synthesis highlights the potential of 3D-HF in nanomaterials research.


Subject(s)
Hydrodynamics , Nanostructures , Microscopy, Electron, Scanning
13.
ACS Nano ; 8(1): 332-9, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24341632

ABSTRACT

Successful intracellular delivery of nucleic acid therapeutics relies on multiaspect optimization, one of which is formulation. While there has been ample innovation on chemical design of polymeric gene carriers, the same cannot be said for physical processing of polymer-DNA nanocomplexes (polyplexes). Conventional synthesis of polyplexes by bulk mixing depends on the operators' experience. The poorly controlled bulk mixing process may also lead to batch-to-batch variation and consequent irreproducibility. Here, we synthesize polyplexes by using a three-dimensional hydrodynamic focusing (3D-HF) technique in a single-layered, planar microfluidic device. Without any additional chemical treatment or postprocessing, the polyplexes prepared by the 3D-HF method show smaller size, slower aggregation rate, and higher transfection efficiency, while exhibiting reduced cytotoxicity compared to the ones synthesized by conventional bulk mixing. In addition, by introducing external acoustic perturbation, mixing can be further enhanced, leading to even smaller nanocomplexes. The 3D-HF method provides a simple and reproducible process for synthesizing high-quality polyplexes, addressing a critical barrier in the eventual translation of nucleic acid therapeutics.


Subject(s)
Hydrodynamics , Polymers/chemistry , Acoustics , Kinetics , Temperature
14.
Sci Rep ; 3: 3155, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24193511

ABSTRACT

As the designs of polymer systems used to deliver nucleic acids continue to evolve, it is becoming increasingly apparent that the basic bulk manufacturing techniques of the past will be insufficient to produce polymer-nucleic acid nanocomplexes that possess the uniformity, stability, and potency required for their successful clinical translation and widespread commercialization. Traditional bulk-prepared products are often physicochemically heterogeneous and may vary significantly from one batch to the next. Here we show that preparation of bioreducible nanocomplexes with an emulsion-based droplet microfluidic system produces significantly improved nanoparticles that are up to fifty percent smaller, more uniform, and are less prone to aggregation. The intracellular integrity of nanocomplexes prepared with this microfluidic method is significantly prolonged, as detected using a high-throughput flow cytometric quantum dot Förster resonance energy transfer nanosensor system. These physical attributes conspire to consistently enhance the delivery of both plasmid DNA and messenger RNA payloads in stem cells, primary cells, and human cell lines. Innovation in processing is necessary to move the field toward the broader clinical implementation of safe and effective nonviral nucleic acid therapeutics, and preparation with droplet microfluidics represents a step forward in addressing the critical barrier of robust and reproducible nanocomplex production.


Subject(s)
Microfluidic Analytical Techniques , Nanostructures/chemistry , Plasmids/chemistry , Polymers/chemistry , Animals , Cells, Cultured , DNA/genetics , DNA/metabolism , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , HEK293 Cells , Hep G2 Cells , Humans , Mice , Particle Size , Plasmids/genetics , Plasmids/metabolism , Transfection
15.
Nanomedicine (Lond) ; 7(4): 565-77, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22471720

ABSTRACT

Nonviral delivery of nucleic acids is a potentially safe and viable therapeutic modality for inherited and acquired diseases. However, current systems have proven too inefficient for widespread clinical translation. The rational design of improved carriers depends on a quantitative, mechanistic understanding of the rate-limiting barriers to efficient intracellular delivery. Separation of the nucleic acid from the carrier is one of the barriers, which may be analyzed by Förster resonance energy transfer (FRET), a mechanism used to detect interactions between fluorescently labeled molecules. When applied to the molecular components of polymer or lipid-based nanocomplexes, FRET provides information on their complexation status, uptake, release and degradation. Recently, the design of FRET systems incorporating quantum dots as energy donors has led to improved signal stability, allowing prolonged measurements, as well as increased sensitivity, enabling direct detection and the potential for multiplexing. The union of quantum dots and FRET is providing new insights into the mechanisms of nonviral nucleic acid delivery through convergent characterization of delivery barriers, and has the potential to accelerate the design of improved carriers to realize the potential of nucleic acid therapeutics and gene medicine.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Genetic Vectors/chemistry , Nucleic Acids/chemistry , Quantum Dots , Nucleic Acids/administration & dosage
16.
J Control Release ; 160(1): 48-56, 2012 May 30.
Article in English | MEDLINE | ID: mdl-22326811

ABSTRACT

Oral nonviral gene delivery is the most attractive and arguably the most challenging route of administration. To identify a suitable carrier, we studied the transport of different classes (natural polymer, synthetic polymer and synthetic lipid-polymer) of DNA nanoparticles through three well-characterized cellular models of intestinal epithelium (Caco2, Caco2-HT29MTX and Caco2-Raji). Poly(phosphoramidate-dipropylamine) (PPA) and Lipid-Protamine-DNA (LPD) nanoparticles consistently showed the highest level of human insulin mRNA expression and luciferase protein expression in these models, typically at least three orders of magnitude above background. All of the nanoparticles increased tight junction permeability, with PPA and PEI having the most dramatic transepithelial electrical resistance (TEER) decreases of (35.3±8.5%) and (37.5±1.5%) respectively in the first hour. The magnitude of TEER decrease correlated with nanoparticle surface charge, implicating electrostatic interactions with the tight junction proteins. However, confocal microscopy revealed that the nanoparticles were mostly uptaken by the enterocytes. Quantitative uptake and transport experiments showed that the endocytosed, quantum dot (QD)-labeled PPA-DNA nanoparticles remained in the intestinal cells even after 24h. Negligible amount of quantum dot labeled DNA was detected in the basolateral chamber, with the exception of the Caco2-Raji co-cultures, which internalized nanoparticles 2 to 3 times more readily compared to Caco2 and Caco2-HT29MTX cultures. PEGylation decreased the transfection efficacy by at least an order of magnitude, lowered the magnitude of TEER decrease and halved the uptake of PPA-DNA nanoparticles. A key finding was insulin mRNA being detected in the underlying HepG2 cells, signifying that some of the plasmid was transported across the intestinal epithelial layer while retaining at least partial bioactivity. However, the inefficient transport suggests that transcytosis alone would not engender a significant therapeutic effect, and this transport modality must be augmented by other means in vivo to render nonviral oral gene delivery practical.


Subject(s)
DNA/administration & dosage , Drug Carriers/chemistry , Insulin/administration & dosage , Intestinal Mucosa/metabolism , Nanoparticles/chemistry , Transfection/methods , Biological Transport , Caco-2 Cells , Coculture Techniques , DNA/genetics , Endocytosis , HT29 Cells , Hep G2 Cells , Humans , Insulin/genetics , Models, Biological , Plasmids , RNA, Messenger/genetics
17.
Mol Ther Nucleic Acids ; 1: e32, 2012 Jul 10.
Article in English | MEDLINE | ID: mdl-23344148

ABSTRACT

Transdifferentiation, where differentiated cells are reprogrammed into another lineage without going through an intermediate proliferative stem cell-like stage, is the next frontier of regenerative medicine. Wernig et al. first described the direct conversion of fibroblasts into functional induced neuronal cells (iNs). Subsequent reports of transdifferentiation into clinically relevant neuronal subtypes have further endorsed the prospect of autologous cell therapy for neurodegenerative disorders. So far, all published neuronal transdifferentiation protocols rely on lentiviruses, which likely precludes their clinical translation. Instead, we delivered plasmids encoding neuronal transcription factors (Brn2, Ascl1, Myt1l) to primary mouse embryonic fibroblasts with a bioreducible linear poly(amido amine). The low toxicity and high transfection efficiency of this gene carrier allowed repeated dosing to sustain high transgene expression levels. Serial 0.5 µg cm(-2) doses of reprogramming factors delivered at 48-hour intervals produced up to 7.6% Tuj1(+) (neuron-specific class III ß-tubulin) cells, a subset of which expressed MAP2 (microtubule-associated protein 2), tau, and synaptophysin. A synapsin-red fluorescent protein (RFP) reporter helped to identify more mature, electrophysiologically active cells, with 24/26 patch-clamped RFP(+) cells firing action potentials. Some non-virally induced neuronal cells (NiNs) were observed firing multiple and spontaneous action potentials. This study demonstrates the feasibility of nonviral neuronal transdifferentiation, and may be amenable to other transdifferentiation processes.

18.
Circulation ; 124(17): 1838-47, 2011 Oct 25.
Article in English | MEDLINE | ID: mdl-21947295

ABSTRACT

BACKGROUND: A variety of studies carried out using either human subjects or laboratory animals suggest that vitamin D and its analogues possess important beneficial activity in the cardiovascular system. Using Cre-Lox technology we have selectively deleted the vitamin D receptor (VDR) gene in the cardiac myocyte in an effort to better understand the role of vitamin D in regulating myocyte structure and function. METHODS AND RESULTS: Targeted deletion of the exon 4 coding sequence in the VDR gene resulted in an increase in myocyte size and left ventricular weight/body weight versus controls both at baseline and following a 7-day infusion of isoproterenol. There was no increase in interstitial fibrosis. These knockout mice demonstrated a reduction in end-diastolic and end-systolic volume by echocardiography, activation of the fetal gene program (ie, increased atrial natriuretic peptide and alpha skeletal actin gene expression), and increased expression of modulatory calcineurin inhibitory protein 1 (MCIP1), a direct downstream target of calcineurin/nuclear factor of activated T cell signaling. Treatment of neonatal cardiomyocytes with 1,25-dihydroxyvitamin D partially reduced isoproterenol-induced MCIP1 mRNA and protein levels and MCIP1 gene promoter activity. CONCLUSIONS: Collectively, these studies demonstrate that the vitamin D-VDR signaling system possesses direct, antihypertrophic activity in the heart. This appears to involve, at least in part, suppression of the prohypertrophic calcineurin/NFAT/MCIP1 pathway. These studies identify a potential mechanism to account for the reported beneficial effects of vitamin D in the cardiovascular system.


Subject(s)
Cardiomegaly/etiology , Cardiomegaly/genetics , Gene Deletion , Myocytes, Cardiac/metabolism , Receptors, Calcitriol/deficiency , Receptors, Calcitriol/genetics , Animals , Cardiomegaly/metabolism , Gene Targeting , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/pathology
19.
Nano Lett ; 11(5): 2178-82, 2011 May 11.
Article in English | MEDLINE | ID: mdl-21506589

ABSTRACT

The future of genetic medicine hinges on successful intracellular delivery of nucleic acid-based therapeutics. While significant effort has concentrated on developing nanocarriers to improve the delivery aspects, scant attention has been paid to the synthetic process of poorly controlled nanocomplex formation. Proposed here is a reliable system to better control the complexation process, and thus the physical properties of the nanocomplexes, through microfluidics-assisted confinement (MAC) in picoliter droplets. We show that these homogeneous MAC-synthesized nanocomplexes exhibit narrower size distribution, lower cytotoxicity, and higher transfection efficiency compared to their bulk-synthesized counterparts. MAC represents a physical approach to control the energetic self-assembly of polyelectrolytes, thereby complementing the chemical innovations in nanocarrier design to optimize nucleic acid and peptide delivery.


Subject(s)
Microfluidics , Nanostructures/chemistry , Nanotechnology/methods , Colloids/chemistry , DNA/chemistry , Electrolytes , Gene Transfer Techniques , Kinetics , Materials Testing , Nucleic Acids/chemistry , Physics/methods , RNA/chemistry
20.
J Steroid Biochem Mol Biol ; 122(5): 326-32, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20813185

ABSTRACT

We have explored the mechanism(s) underlying 1,25 dihydroxyvitamin D's (1,25(OH)(2)D) suppression of agonist-induced vascular smooth muscle cell (VSMC) proliferation. Quiescent cultured adult rat VSMC were treated with 1,25(OH)(2)D for 48h and endothelin (ET) or angiotensin II (AII) for the final 24h. We show that VSMC responded to 1,25(OH)(2)D or its less hypercalcemic analogue RO 25-6760 with ∼70% inhibition of ET-dependent (3)H-thymidine incorporation. The inhibition was linked to a comparable reduction in ET-stimulated cyclin-dependent kinase 2 (Cdk2) activity and suppression of an ET-induced Cdk2 activator, cell division cycle 25 homolog A (Cdc25A). Both 1,25(OH)(2)D and RO 25-6760 completely inhibited the ET-dependent increase in Cdc25A mRNA and protein levels, phosphatase and promoter activities. 1,25(OH)(2)D also suppressed AII-induced DNA synthesis, Cdk2 activity and Cdc25A gene transcription. Inhibition of Cdc25A gene expression using a siRNA approach resulted in significant inhibition of ET or AII-dependent Cdk2 activity and (3)H-thymidine incorporation. The Cdc25A siRNA-mediated inhibition of ET or AII-induced Cdk2 activity and DNA synthesis was not additive with that produced by 1,25(OH)(2)D treatment. These data demonstrate that 1,25(OH)(2)D inhibits VSMC proliferation through a Cdc25A-dependent mechanism and suggest that this hormone may prove useful in the management of disorders characterized by aberrant proliferation of VSMC in the vascular wall.


Subject(s)
Calcitriol/pharmacology , Cell Proliferation/drug effects , Muscle, Smooth, Vascular/cytology , cdc25 Phosphatases/physiology , Angiotensin II/pharmacology , Animals , Cells, Cultured , Cholecalciferol/analogs & derivatives , Cholecalciferol/pharmacology , Cyclin-Dependent Kinase 2/metabolism , Endothelins/pharmacology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL