Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
RNA ; 29(12): 1896-1909, 2023 12.
Article in English | MEDLINE | ID: mdl-37793790

ABSTRACT

The characterization of the conformational landscape of the RNA backbone is rather complex due to the ability of RNA to assume a large variety of conformations. These backbone conformations can be depicted by pseudotorsional angles linking RNA backbone atoms, from which Ramachandran-like plots can be built. We explore here different definitions of these pseudotorsional angles, finding that the most accurate ones are the traditional η (eta) and θ (theta) angles, which represent the relative position of RNA backbone atoms P and C4'. We explore the distribution of η - θ in known experimental structures, comparing the pseudotorsional space generated with structures determined exclusively by one experimental technique. We found that the complete picture only appears when combining data from different sources. The maps provide a quite comprehensive representation of the RNA accessible space, which can be used in RNA-structural predictions. Finally, our results highlight that protein interactions lead to significant changes in the population of the η - θ space, pointing toward the role of induced-fit mechanisms in protein-RNA recognition.


Subject(s)
Proteins , RNA , RNA/genetics , RNA/chemistry , Proteins/chemistry , Nucleic Acid Conformation
2.
Biophys Rev ; 13(6): 995-1005, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35059023

ABSTRACT

The structure of B-DNA, the physiological form of the DNA molecule, has been a central topic in biology, chemistry and physics. Far from uniform and rigid, the double helix was revealed as a flexible and structurally polymorphic molecule. Conformational changes that lead to local and global changes in the helix geometry are mediated by a complex choreography of base and backbone rearrangements affecting the ability of the B-DNA to recognize ligands and consequently on its functionality. In this sense, the knowledge obtained from the sequence-dependent structural properties of B-DNA has always been thought crucial to rationalize how ligands and, most notably, proteins recognize B-DNA and modulate its activity, i.e. the structural basis of gene regulation. Honouring the anniversary of the first high-resolution X-ray structure of a B-DNA molecule, in this contribution, we present the most important discoveries of the last 40 years on the sequence-dependent structural and dynamical properties of B-DNA, from the early beginnings to the current frontiers in the field.

SELECTION OF CITATIONS
SEARCH DETAIL