Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cancer Discov ; 13(11): 2470-2487, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37694973

ABSTRACT

Transposable elements hold regulatory functions that impact cell fate determination by controlling gene expression. However, little is known about the transcriptional machinery engaged at transposable elements in pluripotent and mature versus oncogenic cell states. Through positional analysis over repetitive DNA sequences of H3K27ac chromatin immunoprecipitation sequencing data from 32 normal cell states, we report pluripotent/stem and mature cell state-specific "regulatory transposable elements." Pluripotent/stem elements are binding sites for pluripotency factors (e.g., NANOG, SOX2, OCT4). Mature cell elements are docking sites for lineage-specific transcription factors, including AR and FOXA1 in prostate epithelium. Expanding the analysis to prostate tumors, we identify a subset of regulatory transposable elements shared with pluripotent/stem cells, including Tigger3a. Using chromatin editing technology, we show how such elements promote prostate cancer growth by regulating AR transcriptional activity. Collectively, our results suggest that oncogenesis arises from lineage-specific transcription factors hijacking pluripotent/stem cell regulatory transposable elements. SIGNIFICANCE: We show that oncogenesis relies on co-opting transposable elements from pluripotent stem cells as regulatory elements altering the recruitment of lineage-specific transcription factors. We further discover how co-option is dependent on active chromatin states with important implications for developing treatment options against drivers of oncogenesis across the repetitive DNA. This article is featured in Selected Articles from This Issue, p. 2293.


Subject(s)
Prostatic Neoplasms , Transcription Factors , Male , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , DNA Transposable Elements/genetics , Cell Differentiation , Chromatin/genetics , Prostatic Neoplasms/genetics , Carcinogenesis/genetics
2.
Curr Opin Genet Dev ; 74: 101911, 2022 06.
Article in English | MEDLINE | ID: mdl-35487182

ABSTRACT

The vast array of cell states found across human tissue arises from chromatin variants, which correspond to segments of the genome, known as DNA elements, adopting a different chromatin state over cell state transitions. Oncogenesis stems from alterations to the chromatin states over DNA elements that result in cancer-associated chromatin variants. Here, we review how cancer-associated chromatin variants call attention to repetitive DNA elements, and guide the functional characterization of transposable elements to decode their role in oncogenesis. We further discuss prevailing opportunities in the study of repetitive DNA elements to move towards the 'complete cancer genome' goal for precision medicine in oncology.


Subject(s)
DNA Transposable Elements , Neoplasms , Carcinogenesis/genetics , Chromatin/genetics , DNA Methylation , DNA Transposable Elements/genetics , Humans , Neoplasms/genetics
3.
Genome Res ; 31(12): 2236-2248, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34799402

ABSTRACT

Alu are high copy number interspersed repeats that have accumulated near genes during primate and human evolution. They are a pervasive source of structural variation in modern humans. Impacts that Alu insertions may have on gene expression are not well understood, although some have been associated with expression quantitative trait loci (eQTLs). Here, we directly test regulatory effects of polymorphic Alu insertions in isolation of other variants on the same haplotype. To screen insertion variants for those with such effects, we used ectopic luciferase reporter assays and evaluated 110 Alu insertion variants, including more than 40 with a potential role in disease risk. We observed a continuum of effects with significant outliers that up- or down-regulate luciferase activity. Using a series of reporter constructs, which included genomic context surrounding the Alu, we can distinguish between instances in which the Alu disrupts another regulator and those in which the Alu introduces new regulatory sequence. We next focused on three polymorphic Alu loci associated with breast cancer that display significant effects in the reporter assay. We used CRISPR to modify the endogenous sequences, establishing cell lines varying in the Alu genotype. Our findings indicate that Alu genotype can alter expression of genes implicated in cancer risk, including PTHLH, RANBP9, and MYC These data show that commonly occurring polymorphic Alu elements can alter transcript levels and potentially contribute to disease risk.

4.
Cancer Res ; 81(23): 5833-5848, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34642184

ABSTRACT

Prostate cancer is a heterogeneous disease whose progression is linked to genome instability. However, the impact of this instability on the noncoding genome and its three-dimensional organization to aid progression is unclear. Using primary benign and tumor tissue, we find a high concordance in higher-order three-dimensional genome organization. This concordance argues for constraints to the topology of prostate tumor genomes. Nonetheless, we identified changes in focal chromatin interactions, typical of loops bridging noncoding cis-regulatory elements, and showed how structural variants can induce these changes to guide cis-regulatory element hijacking. Such events resulted in opposing differential expression of genes found at antipodes of rearrangements. Collectively, these results argue that changes to focal chromatin interactions, as opposed to higher-order genome organization, allow for aberrant gene regulation and are repeatedly mediated by structural variants in primary prostate cancer. SIGNIFICANCE: This work showcases how the noncoding genome can be hijacked by focal insults to its three-dimensional organization that contribute to prostate cancer oncogenesis.


Subject(s)
Carcinogenesis/genetics , Chromatin/genetics , Gene Expression Regulation, Neoplastic , Genome, Human , Genomic Instability , Prostatic Neoplasms/genetics , RNA, Untranslated/genetics , Carcinogenesis/pathology , Gene Rearrangement , Humans , Male , Prostatic Neoplasms/pathology , RNA-Seq
5.
Cancer Discov ; 10(9): 1312-1329, 2020 09.
Article in English | MEDLINE | ID: mdl-32546577

ABSTRACT

Tumor progression upon treatment arises from preexisting resistant cancer cells and/or adaptation of persister cancer cells committing to an expansion phase. Here, we show that evasion from viral mimicry response allows the growth of taxane-resistant triple-negative breast cancer (TNBC). This is enabled by an epigenetic state adapted to taxane-induced metabolic stress, where DNA hypomethylation over loci enriched in transposable elements (TE) is compensated by large chromatin domains of H3K27me3 to warrant TE repression. This epigenetic state creates a vulnerability to epigenetic therapy against EZH2, the H3K27me3 methyltransferase, which alleviates TE repression in taxane-resistant TNBC, leading to double-stranded RNA production and growth inhibition through viral mimicry response. Collectively, our results illustrate how epigenetic states over TEs promote cancer progression under treatment and can inform about vulnerabilities to epigenetic therapy. SIGNIFICANCE: Drug-resistant cancer cells represent a major barrier to remission for patients with cancer. Here we show that drug-induced metabolic perturbation and epigenetic states enable evasion from the viral mimicry response induced by chemotherapy in TNBC. These epigenetic states define a vulnerability to epigenetic therapy using EZH2 inhibitors in taxane-resistant TNBC.See related commentary by Janin and Esteller, p. 1258.This article is highlighted in the In This Issue feature, p. 1241.


Subject(s)
Antineoplastic Agents/pharmacology , Epigenesis, Genetic/immunology , Molecular Mimicry/immunology , Triple Negative Breast Neoplasms/immunology , Tumor Escape/genetics , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Chromatin Immunoprecipitation Sequencing , DNA Methylation/drug effects , DNA Methylation/immunology , DNA Transposable Elements/genetics , Disease Progression , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/immunology , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/metabolism , Epigenesis, Genetic/drug effects , Female , Humans , Mice , Molecular Mimicry/genetics , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , RNA, Double-Stranded/immunology , RNA, Double-Stranded/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
6.
Nat Commun ; 11(1): 441, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31974375

ABSTRACT

Prostate cancer is the second most commonly diagnosed malignancy among men worldwide. Recurrently mutated in primary and metastatic prostate tumors, FOXA1 encodes a pioneer transcription factor involved in disease onset and progression through both androgen receptor-dependent and androgen receptor-independent mechanisms. Despite its oncogenic properties however, the regulation of FOXA1 expression remains unknown. Here, we identify a set of six cis-regulatory elements in the FOXA1 regulatory plexus harboring somatic single-nucleotide variants in primary prostate tumors. We find that deletion and repression of these cis-regulatory elements significantly decreases FOXA1 expression and prostate cancer cell growth. Six of the ten single-nucleotide variants mapping to FOXA1 regulatory plexus significantly alter the transactivation potential of cis-regulatory elements by modulating the binding of transcription factors. Collectively, our results identify cis-regulatory elements within the FOXA1 plexus mutated in primary prostate tumors as potential targets for therapeutic intervention.


Subject(s)
Hepatocyte Nuclear Factor 3-alpha/genetics , Mutation , Prostatic Neoplasms/genetics , Regulatory Sequences, Nucleic Acid , Binding Sites , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Male , Transcription Factors/metabolism
7.
Cancer Cell ; 36(6): 674-689.e6, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31735626

ABSTRACT

Thousands of noncoding somatic single-nucleotide variants (SNVs) of unknown function are reported in tumors. Partitioning the genome according to cistromes reveals the enrichment of somatic SNVs in prostate tumors as opposed to adjacent normal tissue cistromes of master transcription regulators, including AR, FOXA1, and HOXB13. This parallels enrichment of prostate cancer genetic predispositions over these transcription regulators' tumor cistromes, exemplified at the 8q24 locus harboring both risk variants and somatic SNVs in cis-regulatory elements upregulating MYC expression. However, Massively Parallel Reporter Assays reveal that few SNVs can alter the transactivation potential of individual cis-regulatory elements. Instead, similar to inherited risk variants, SNVs accumulate in cistromes of master transcription regulators required for prostate cancer development.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Homeodomain Proteins/metabolism , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Homeodomain Proteins/genetics , Humans , Male , Mutation/genetics , Prostatic Neoplasms/pathology , Up-Regulation/genetics
8.
Sci Rep ; 8(1): 5776, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29636490

ABSTRACT

Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) represent naive and primed pluripotency states, respectively, and are maintained in vitro by specific signalling pathways. Furthermore, ESCs cultured in serum-free medium with two kinase inhibitors (2i-ESCs) are thought to be the ground naïve pluripotent state. Here, we present a comparative study of the epigenetic and transcriptional states of pericentromeric heterochromatin satellite sequences found in these pluripotent states. We show that 2i-ESCs are distinguished from other pluripotent cells by a prominent enrichment in H3K27me3 and low levels of DNA methylation at pericentromeric heterochromatin. In contrast, serum-containing ESCs exhibit higher levels of major satellite repeat transcription, which is lower in 2i-ESCs and even more repressed in primed EpiSCs. Removal of either DNA methylation or H3K9me3 at PCH in 2i-ESCs leads to enhanced deposition of H3K27me3 with few changes in satellite transcript levels. In contrast, their removal in EpiSCs does not lead to deposition of H3K27me3 but rather removes transcriptional repression. Altogether, our data show that the epigenetic state of PCH is modified during transition from naive to primed pluripotency states towards a more repressive state, which tightly represses the transcription of satellite repeats.


Subject(s)
DNA, Satellite/metabolism , Epigenesis, Genetic , Germ Layers/metabolism , Heterochromatin/metabolism , Histones/metabolism , Mouse Embryonic Stem Cells/metabolism , Animals , Cell Line , DNA Methylation , Heterochromatin/genetics , Methylation , Mice , Protein Processing, Post-Translational
9.
Hum Mol Genet ; 27(14): 2409-2424, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29659838

ABSTRACT

Alterations of DNA methylation landscapes and machinery are a hallmark of many human diseases. A prominent case is the ICF syndrome, a rare autosomal recessive immunological/neurological disorder diagnosed by the loss of DNA methylation at (peri)centromeric repeats and its associated chromosomal instability. It is caused by mutations in the de novo DNA methyltransferase DNMT3B in about half of the patients (ICF1). In the remainder, the striking identification of mutations in factors devoid of DNA methyltransferase activity, ZBTB24 (ICF2), CDCA7 (ICF3) or HELLS (ICF4), raised key questions about common or distinguishing DNA methylation alterations downstream of these mutations and hence, about the functional link between the four factors. Here, we established the first comparative methylation profiling in ICF patients with all four genotypes and we provide evidence that, despite unifying hypomethylation of pericentromeric repeats and a few common loci, methylation profiling clearly distinguished ICF1 from ICF2, 3 and 4 patients. Using available genomic and epigenomic annotations to characterize regions prone to loss of DNA methylation downstream of ICF mutations, we found that ZBTB24, CDCA7 and HELLS mutations affect CpG-poor regions with heterochromatin features. Among these, we identified clusters of coding and non-coding genes mostly expressed in a monoallelic manner and implicated in neuronal development, consistent with the clinical spectrum of these patients' subgroups. Hence, beyond providing blood-based biomarkers of dysfunction of ICF factors, our comparative study unveiled new players to consider at certain heterochromatin regions of the human genome.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Helicases/genetics , Immunologic Deficiency Syndromes/genetics , Nuclear Proteins/genetics , Repressor Proteins/genetics , Chromosomal Instability/genetics , DNA Methylation/genetics , Female , Genome, Human/genetics , Genotype , Heterochromatin/genetics , Humans , Immunologic Deficiency Syndromes/physiopathology , Male , Mutation , Neurogenesis/genetics , DNA Methyltransferase 3B
10.
Nucleic Acids Res ; 45(10): 5739-5756, 2017 Jun 02.
Article in English | MEDLINE | ID: mdl-28334849

ABSTRACT

Hypomorphic mutations in DNA-methyltransferase DNMT3B cause majority of the rare disorder Immunodeficiency, Centromere instability and Facial anomalies syndrome cases (ICF1). By unspecified mechanisms, mutant-DNMT3B interferes with lymphoid-specific pathways resulting in immune response defects. Interestingly, recent findings report that DNMT3B shapes intragenic CpG-methylation of highly-transcribed genes. However, how the DNMT3B-dependent epigenetic network modulates transcription and whether ICF1-specific mutations impair this process remains unknown. We performed a transcriptomic and epigenomic study in patient-derived B-cell lines to investigate the genome-scale effects of DNMT3B dysfunction. We highlighted that altered intragenic CpG-methylation impairs multiple aspects of transcriptional regulation, like alternative TSS usage, antisense transcription and exon splicing. These defects preferentially associate with changes of intragenic H3K4me3 and at lesser extent of H3K27me3 and H3K36me3. In addition, we highlighted a novel DNMT3B activity in modulating the self-regulatory circuit of sense-antisense pairs and the exon skipping during alternative splicing, through interacting with RNA molecules. Strikingly, altered transcription affects disease relevant genes, as for instance the memory-B cell marker CD27 and PTPRC genes, providing us with biological insights into the ICF1-syndrome pathogenesis. Our genome-scale approach sheds light on the mechanisms still poorly understood of the intragenic function of DNMT3B and DNA methylation in gene expression regulation.


Subject(s)
Alternative Splicing , Anorexia/genetics , Cachexia/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Eye Abnormalities/genetics , Histones/genetics , Immunologic Deficiency Syndromes/genetics , Mutation , RNA, Messenger/genetics , Skin Diseases/genetics , Anorexia/immunology , Anorexia/pathology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Cachexia/immunology , Cachexia/pathology , Cell Line, Transformed , CpG Islands , DNA (Cytosine-5-)-Methyltransferases/immunology , DNA Methylation , Epigenesis, Genetic , Eye Abnormalities/immunology , Eye Abnormalities/pathology , Facies , Female , Histones/immunology , Humans , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/pathology , Immunologic Memory , Leukocyte Common Antigens/genetics , Leukocyte Common Antigens/immunology , Male , Promoter Regions, Genetic , RNA, Messenger/immunology , Skin Diseases/immunology , Skin Diseases/pathology , Transcription, Genetic , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology , DNA Methyltransferase 3B
11.
Sci Rep ; 7: 42520, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28186195

ABSTRACT

Centromeres are chromosomal domains essential for genomic stability. We report here the remarkable transcriptional and epigenetic perturbations at murine centromeres in genotoxic stress conditions. A strong and selective transcriptional activation of centromeric repeats is detected within hours. This is followed by disorganization of centromeres with striking delocalization of nucleosomal CENP-A, the key determinant of centromere identity and function, in a mechanism requiring active transcription of centromeric repeats, the DNA Damage Response (DDR) effector ATM and chromatin remodelers/histone chaperones. In the absence of p53 checkpoint, activated transcription of centromeric repeats and CENP-A delocalization do not occur and cells accumulate micronuclei indicative of genomic instability. In addition, activated transcription and loss of centromeres identity are features of permanently arrested senescent cells with persistent DDR activation. Together, these findings bring out cooperation between DDR effectors and loss of centromere integrity as a safeguard mechanism to prevent genomic instability in context of persistent DNA damage signalling.


Subject(s)
Cellular Senescence/genetics , Centromere Protein A/metabolism , Chromatin Assembly and Disassembly , Chromatin/genetics , Chromatin/metabolism , Stress, Physiological/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Checkpoints/genetics , Cell Line , Centromere/genetics , Centromere/metabolism , DNA Damage , DNA, Satellite , Histones/metabolism , Mice , Nucleosomes/genetics , Nucleosomes/metabolism , Protein Binding , Signal Transduction , Transcriptional Activation , Tumor Suppressor Protein p53/metabolism
12.
Cancer Res ; 77(1): 62-73, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27815388

ABSTRACT

Chromosome segregation during mitosis is monitored by the mitotic checkpoint and is dependent upon DNA methylation. ZBTB4 is a mammalian epigenetic regulator with high affinity for methylated CpGs that localizes at pericentromeric heterochromatin and is frequently downregulated in cancer. Here, we report that decreased ZBTB4 expression correlates with high genome instability across many frequent human cancers. In human cell lines, ZBTB4 depletion was sufficient to increase the prevalence of micronuclei and binucleated cells in parallel with aberrant mitotic checkpoint gene expression, a weakened mitotic checkpoint, and an increased frequency of lagging chromosomes during mitosis. To extend these findings, we generated Zbtb4-deficient mice. Zbtb4-/- mice were smaller than their wild-type littermates. Primary cells isolated from Zbtb4-/- mice exhibited diminished mitotic checkpoint activity, increased mitotic defects, aneuploid cells marked by a specific transcriptional signature, and increased genomic instability. Zbtb4-/- mice were also more susceptible to 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA)-induced skin carcinogenesis. Our results establish the epigenetic regulator ZBTB4 as an essential component in maintaining genomic stability in mammals. Cancer Res; 77(1); 62-73. ©2016 AACR.


Subject(s)
Aneuploidy , Cell Transformation, Neoplastic/genetics , Genomic Instability/genetics , M Phase Cell Cycle Checkpoints/genetics , Neoplasms/genetics , Repressor Proteins/genetics , Animals , Blotting, Western , Disease Models, Animal , Flow Cytometry , Humans , In Situ Hybridization, Fluorescence , Mice , Mice, Knockout , Microscopy, Confocal , Oligonucleotide Array Sequence Analysis , Skin Neoplasms/genetics
14.
Nat Commun ; 6: 7870, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26216346

ABSTRACT

The life-threatening Immunodeficiency, Centromeric Instability and Facial Anomalies (ICF) syndrome is a genetically heterogeneous autosomal recessive disorder. Twenty percent of patients cannot be explained by mutations in the known ICF genes DNA methyltransferase 3B or zinc-finger and BTB domain containing 24. Here we report mutations in the cell division cycle associated 7 and the helicase, lymphoid-specific genes in 10 unexplained ICF cases. Our data highlight the genetic heterogeneity of ICF syndrome; however, they provide evidence that all genes act in common or converging pathways leading to the ICF phenotype.


Subject(s)
DNA Helicases/genetics , Face/abnormalities , Immunologic Deficiency Syndromes/genetics , Nuclear Proteins/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Mutation , Mutation, Missense , Primary Immunodeficiency Diseases , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...