Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 429: 115702, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34464673

ABSTRACT

Intramuscular (IM) injection of nitrite (1-10 mg/kg) confers survival benefit and protects against lung injury after exposure to chlorine gas in preclinical models. Herein, we evaluated safety/toxicity parameters after single, and repeated (once daily for 7 days) IM injection of nitrite in male and female Sprague Dawley rats and Beagle dogs. The repeat dose studies were performed in compliance with the Federal Drug Administration's (FDA) Good Laboratory Practices Code of Federal Regulations (21 CFR Part 58). Parameters evaluated consisted of survival, clinical observations, body weights, clinical pathology, plasma drug levels, methemoglobin and macroscopic and microscopic pathology. In rats and dogs, single doses of ≥100 mg/kg and 60 mg/kg resulted in death and moribundity, while repeated administration of ≤30 or ≤ 10 mg/kg/day, respectively, was well tolerated. Therefore, the maximum tolerated dose following repeated administration in rats and dogs were determined to be 30 mg/kg/day and 10 mg/kg/day, respectively. Effects at doses below the maximum tolerated dose (MTD) were limited to emesis (in dogs only) and methemoglobinemia (in both species) with clinical signs (e.g. blue discoloration of lips) being dose-dependent, transient and reversible. These signs were not considered adverse, therefore the No Observed Adverse Effect Level (NOAEL) for both rats and dogs was 10 mg/kg/day in males (highest dose tested for dogs), and 3 mg/kg/day in females. Toxicokinetic assessment of plasma nitrite showed no difference between male and females, with Cmax occurring between 5 mins and 0.5 h (rats) or 0.25 h (dogs). In summary, IM nitrite was well tolerated in rats and dogs at doses previously shown to confer protection against chlorine gas toxicity.


Subject(s)
Antidotes/toxicity , Sodium Nitrite/toxicity , Toxicity Tests , Animals , Antidotes/administration & dosage , Dogs , Dose-Response Relationship, Drug , Female , Injections, Intramuscular , Male , Maximum Tolerated Dose , Methemoglobinemia/chemically induced , No-Observed-Adverse-Effect Level , Rats, Sprague-Dawley , Risk Assessment , Sex Factors , Sodium Nitrite/administration & dosage , Species Specificity , Toxicokinetics , Vomiting/chemically induced
2.
Antiviral Res ; 182: 104875, 2020 10.
Article in English | MEDLINE | ID: mdl-32755661

ABSTRACT

Venezuelan, eastern, and western equine encephalitis viruses (VEEV, EEEV, and WEEV) are mosquito-borne viruses in the Americas that cause central nervous system (CNS) disease in humans and equids. In this study, we directly characterized the pathogenesis of VEEV, EEEV, and WEEV in cynomolgus macaques following subcutaneous exposure because this route more closely mimics natural infection via mosquito transmission or by an accidental needle stick. Our results highlight how EEEV is significantly more pathogenic compared to VEEV similarly to what is observed in humans. Interestingly, EEEV appears to be just as neuropathogenic by subcutaneous exposure as it was in previously completed aerosol exposure studies. In contrast, subcutaneous exposure of cynomolgus macaques with WEEV caused limited disease and is contradictory to what has been reported for aerosol exposure. Several differences in viremia, hematology, or tissue tropism were noted when animals were exposed subcutaneously compared to prior aerosol exposure studies. This study provides a more complete picture of the pathogenesis of the encephalitic alphaviruses and highlights how further defining the neuropathology of these viruses could have important implications for the development of medical countermeasures for the neurovirulent alphaviruses.


Subject(s)
Encephalitis Virus, Eastern Equine/pathogenicity , Encephalitis Virus, Venezuelan Equine/pathogenicity , Encephalitis Virus, Western Equine/pathogenicity , Encephalomyelitis, Equine/pathology , Encephalomyelitis, Venezuelan Equine/pathology , Macaca fascicularis/virology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Female , Male , Virus Replication
3.
Hum Gene Ther Clin Dev ; 25(1): 16-27, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24649838

ABSTRACT

Herpes simplex virus type 1 (HSV-1) mutants lacking the γ(1)34.5 neurovirulence loci are promising agents for treating malignant glioma. Arming oncolytic HSV-1 to express immunostimulatory genes may potentiate therapeutic efficacy. We have previously demonstrated improved preclinical efficacy, biodistribution, and safety of M002, a γ(1)34.5-deleted HSV-1 engineered to express murine IL-12. Herein, we describe the safety and biodistribution of M032, a γ(1)34.5-deleted HSV-1 virus that expresses human IL-12 after intracerebral administration to nonhuman primates, Aotus nancymae. Cohorts were administered vehicle, 10(6), or 10(8) pfu of M032 on day 1 and subjected to detailed clinical observations performed serially over a 92-day trial. Animals were sacrificed on days 3, 31, and 91 for detailed histopathologic assessments of all organs and to isolate and quantify virus in all organs. With the possible exception of one animal euthanized on day 16, neither adverse clinical signs nor sex- or dose-related differences were attributed to M032. Elevated white blood cell and neutrophil counts were observed in virus-injected groups on day 3, but no other significant changes were noted in clinical chemistry or coagulation parameters. Minimal to mild inflammation and fibrosis detected, primarily in meningeal tissues, in M032-injected animals on days 3 and 31 had mostly resolved by day 91. The highest viral DNA levels were detected at the injection site and motor cortex on day 3 but decreased in central nervous system tissues over time. These data demonstrate the requisite safety of intracerebral M032 administration for consideration as a therapeutic for treating malignant brain tumors.


Subject(s)
Glioma/therapy , Herpesvirus 1, Human/genetics , Infusions, Intraventricular , Interleukin-12/genetics , Oncolytic Virotherapy/methods , Animals , Aotidae , Brain Neoplasms/therapy , Drug Administration Routes , Female , Interleukin-12/biosynthesis , Male , Virus Replication
4.
Toxicol Sci ; 123(1): 58-70, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21712504

ABSTRACT

Chronic ingestion of high concentrations of hexavalent chromium [Cr(VI)] in drinking water induces intestinal tumors in mice. To investigate the mode of action (MOA) underlying these tumors, a 90-day drinking water study was conducted using similar exposure conditions as in a previous cancer bioassay, as well as lower (heretofore unexamined) drinking water concentrations. Tissue samples were collected in mice exposed for 7 or 90 days and subjected to histopathological, biochemical, toxicogenomic, and toxicokinetic analyses. Described herein are the results of toxicokinetic, biochemical, and pathological findings. Following 90 days of exposure to 0.3-520 mg/l of sodium dichromate dihydrate (SDD), total chromium concentrations in the duodenum were significantly elevated at ≥ 14 mg/l. At these concentrations, significant decreases in the reduced-to-oxidized glutathione ratio (GSH/GSSG) were observed. Beginning at 60 mg/l, intestinal lesions were observed including villous cytoplasmic vacuolization. Atrophy, apoptosis, and crypt hyperplasia were evident at ≥ 170 mg/l. Protein carbonyls were elevated at concentrations ≥ 4 mg/l SDD, whereas oxidative DNA damage, as assessed by 8-hydroxydeoxyguanosine, was not increased in any treatment group. Significant decreases in the GSH/GSSG ratio and similar histopathological lesions as observed in the duodenum were also observed in the jejunum following 90 days of exposure. Cytokine levels (e.g., interleukin-1ß) were generally depressed or unaltered at the termination of the study. Overall, the data suggest that Cr(VI) in drinking water can induce oxidative stress, villous cytotoxicity, and crypt hyperplasia in the mouse intestine and may underlie the MOA of intestinal carcinogenesis in mice.


Subject(s)
Carcinogens, Environmental/toxicity , Chromates/toxicity , Chromium/toxicity , Aberrant Crypt Foci/chemically induced , Aberrant Crypt Foci/metabolism , Aberrant Crypt Foci/pathology , Administration, Oral , Animals , Apoptosis/drug effects , Carcinogenicity Tests , Carcinogens, Environmental/pharmacokinetics , Chromates/pharmacokinetics , Chromium/pharmacokinetics , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cytokines/metabolism , DNA Damage , Drinking Water , Female , Intestines/drug effects , Intestines/pathology , Mice , Mice, Inbred Strains , Oxidative Stress/drug effects , Risk Assessment
5.
Clin Cancer Res ; 15(12): 4131-7, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19509153

ABSTRACT

PURPOSE: The purpose of this study was to evaluate the biodistribution and toxicity of Ad5.SSTR/TK.RGD, an infectivity-enhanced adenovirus expressing a therapeutic suicide gene and somatostatin receptor type 2 (for noninvasive assessment of gene transfer with nuclear imaging) in advance of a planned phase I clinical trial for recurrent ovarian carcinoma. EXPERIMENTAL DESIGN: Cohorts of Syrian hamsters were treated i.p. for 3 consecutive days with Ad5.SSTR/TK.RGD or control buffer with or without the prodrug ganciclovir (GCV) and euthanized on day 4, 19, or 56. Tissue and serum samples were evaluated for the presence of virus using qPCR analysis and were assessed for vector-related tissue or laboratory effects. RESULTS: Levels of Ad5.SSTR/TK.RGD in blood and tissues outside of the abdominal cavity were low, indicating minimal systemic absorption. GCV did not affect Ad5.SSTR/TK.RGD biodistribution. The mean Ad5.SSTR/TK.RGD viral level was 100-fold lower on day 19 than day 4, suggesting vector elimination over time. Animals in the Ad5.SSTR/TK.RGD +/- GCV cohort had clinical laboratory parameters and microscopic lesions in the abdominal organs indicative of an inflammatory response. Toxicity in this dose cohort seemed to be reversible over time. CONCLUSIONS: These studies provide justification for planned dosing of Ad5.SSTR/TK.RGD for a planned phase I clinical trial and insights regarding anticipated toxicity.


Subject(s)
Adenoviridae/metabolism , Genetic Therapy/adverse effects , Genetic Vectors/adverse effects , Genetic Vectors/metabolism , Adenoviridae/genetics , Animals , Clinical Trials, Phase I as Topic , Cricetinae , Female , Ganciclovir/pharmacology , Gene Transfer Techniques , Genetic Vectors/genetics , Mesocricetus , Receptors, Somatostatin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...