Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(9): 4985-5001, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38471816

ABSTRACT

Many microRNA (miRNA)-guided Argonaute proteins can cleave RNA ('slicing'), even though miRNA-mediated target repression is generally cleavage-independent. Here we use Caenorhabditis elegans to examine the role of catalytic residues of miRNA Argonautes in organismal development. In contrast to previous work, mutations in presumed catalytic residues did not interfere with development when introduced by CRISPR. We find that unwinding and decay of miRNA star strands is weakly defective in the catalytic residue mutants, with the largest effect observed in embryos. Argonaute-Like Gene 2 (ALG-2) is more dependent on catalytic residues for unwinding than ALG-1. The miRNAs that displayed the greatest (albeit minor) dependence on catalytic residues for unwinding tend to form stable duplexes with their star strand, and in some cases, lowering duplex stability alleviates dependence on catalytic residues. While a few miRNA guide strands are reduced in the mutant background, the basis of this is unclear since changes were not dependent on EBAX-1, an effector of Target-Directed miRNA Degradation (TDMD). Overall, this work defines a role for the catalytic residues of miRNA Argonautes in star strand decay; future work should examine whether this role contributes to the selection pressure to conserve catalytic activity of miRNA Argonautes across the metazoan phylogeny.


Subject(s)
Argonaute Proteins , Caenorhabditis elegans Proteins , Caenorhabditis elegans , MicroRNAs , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/chemistry , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/chemistry , RNA Stability/genetics , Mutation , Catalytic Domain/genetics , CRISPR-Cas Systems , RNA-Binding Proteins
2.
Nucleic Acids Res ; 52(9): 5376-5391, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38412299

ABSTRACT

The RNA helicase UPF1 interacts with mRNAs, mRNA decay machinery, and the terminating ribosome to promote nonsense-mediated mRNA decay (NMD). Structural and biochemical data have revealed that UPF1 exists in an enzymatically autoinhibited 'closed' state. Upon binding the NMD protein UPF2, UPF1 undergoes an extensive conformational change into a more enzymatically active 'open' state, which exhibits enhanced ATPase and helicase activity. However, mechanically deficient UPF1 mutants (i.e. poorly processive, slow, and mechanochemically uncoupled) can support efficient NMD, bringing into question the roles of UPF1 enzymatic autoinhibition and activation in NMD. Here, we identify two additional important features of the activated open state: slower RNA binding kinetics and enhanced ATP-stimulated RNA dissociation kinetics. Computational modeling based on empirical measurements of UPF1, UPF2 and RNA interaction kinetics predicts that the majority of UPF1-RNA binding and dissociation events in cells occur independently of UPF2 binding. We find that UPF1 mutants with either reduced or accelerated dissociation from RNA have NMD defects, whereas UPF1 mutants that are more dependent on UPF2 for catalytic activity remain active on well-established NMD targets. These findings support a model in which the kinetics of UPF1-mRNA interactions are important determinants of cellular NMD efficiency.


Subject(s)
Adenosine Triphosphatases , Nonsense Mediated mRNA Decay , RNA Helicases , RNA, Messenger , Humans , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphate/metabolism , Kinetics , Mutation , Protein Binding , RNA Helicases/metabolism , RNA Helicases/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Trans-Activators/metabolism , Trans-Activators/genetics
3.
bioRxiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-36711716

ABSTRACT

Many Argonaute proteins can cleave RNA ("slicing") as part of the microRNA-induced silencing complex (miRISC), even though miRNA-mediated target repression is generally independent of target cleavage. Here we use genome editing in C. elegans to examine the role of miRNA-guided slicing in organismal development. In contrast to previous work, slicing-inactivating mutations did not interfere with normal development when introduced by CRISPR. We find that unwinding and decay of miRNA star strands is weakly defective in the absence of slicing, with the largest effect observed in embryos. Argonaute-Like Gene 2 (ALG-2) is more dependent on slicing for unwinding than ALG-1. The miRNAs that displayed the greatest (albeit minor) dependence on slicing for unwinding tend to form stable duplexes with their star strand, and in some cases, lowering duplex stability alleviates dependence on slicing. Gene expression changes were consistent with negligible to moderate loss of function for miRNA guides whose star strand was upregulated, suggesting a reduced proportion of mature miRISC in slicing mutants. While a few miRNA guide strands are reduced in the mutant background, the basis of this is unclear since changes were not dependent on EBAX-1, a factor in the Target-Directed miRNA Degradation (TDMD) pathway. Overall, this work defines a role for miRNA Argonaute slicing in star strand decay; future work should examine whether this role could have contributed to the selection pressure to conserve catalytic activity of miRNA Argonautes across the metazoan phylogeny.

4.
bioRxiv ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-38076847

ABSTRACT

The RNA helicase UPF1 interacts with mRNAs, mRNA decay machinery, and the terminating ribosome to promote nonsense-mediated mRNA decay (NMD). Structural and biochemical data have revealed that UPF1 exists in an enzymatically autoinhibited "closed" state. Upon binding the NMD protein UPF2, UPF1 undergoes an extensive conformational change into a more enzymatically active "open" state, which exhibits enhanced ATPase and helicase activity. However, mechanically deficient UPF1 mutants can support efficient NMD, bringing into question the roles of UPF1 enzymatic autoinhibition and activation in NMD. Here, we identify two additional important features of the activated open state: slower nucleic acid binding kinetics and enhanced ATP-stimulated nucleic acid dissociation kinetics. Computational modeling based on empirical measurements of UPF1, UPF2, and RNA interaction kinetics predicts that the majority of UPF1-RNA binding and dissociation events in cells occur independently of UPF2 binding. We find that UPF1 mutants with either reduced or accelerated dissociation from RNA have NMD defects, whereas UPF1 mutants that are more dependent on UPF2 for catalytic activity remain active on well-established NMD targets. These findings support a model in which the kinetics of UPF1-mRNA interactions are important determinants of cellular NMD efficiency.

5.
Cell Rep ; 40(6): 111154, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35947946

ABSTRACT

MicroRNA (miRNA) abundance is tightly controlled by regulation of biogenesis and decay. Here, we show that the mir-35 miRNA family undergoes selective decay at the transition from embryonic to larval development in C. elegans. The seed sequence of the miRNA is necessary and largely sufficient for this regulation. Sequences outside the seed (3' end) regulate mir-35 abundance in the embryo but are not necessary for sharp decay at the transition to larval development. Enzymatic modifications of the miRNA 3' end are neither prevalent nor correlated with changes in decay, suggesting that miRNA 3' end display is not a core feature of this mechanism and further supporting a seed-driven decay model. Our findings demonstrate that seed-sequence-specific decay can selectively and coherently regulate all redundant members of a miRNA seed family, a class of mechanism that has great biological and therapeutic potential for dynamic regulation of a miRNA family's target repertoire.


Subject(s)
Caenorhabditis elegans Proteins , MicroRNAs , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , MicroRNAs/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...