Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 92(5): 681-95, 2013 May 02.
Article in English | MEDLINE | ID: mdl-23623388

ABSTRACT

Arthrogryposis multiplex congenita (AMC) is caused by heterogeneous pathologies leading to multiple antenatal joint contractures through fetal akinesia. Understanding the pathophysiology of this disorder is important for clinical care of the affected individuals and genetic counseling of the families. We thus aimed to establish the genetic basis of an AMC subtype that is associated with multiple dysmorphic features and intellectual disability (ID). We used haplotype analysis, next-generation sequencing, array comparative genomic hybridization, and chromosome breakpoint mapping to identify the pathogenic mutations in families and simplex cases. Suspected disease variants were verified by cosegregation analysis. We identified disease-causing mutations in the zinc-finger gene ZC4H2 in four families affected by X-linked AMC plus ID and one family affected by cerebral palsy. Several heterozygous females were also affected, but to a lesser degree. Furthermore, we found two ZC4H2 deletions and one rearrangement in two female and one male unrelated simplex cases, respectively. In mouse primary hippocampal neurons, transiently produced ZC4H2 localized to the postsynaptic compartment of excitatory synapses, and the altered protein influenced dendritic spine density. In zebrafish, antisense-morpholino-mediated zc4h2 knockdown caused abnormal swimming and impaired α-motoneuron development. All missense mutations identified herein failed to rescue the swimming defect of zebrafish morphants. We conclude that ZC4H2 point mutations, rearrangements, and small deletions cause a clinically variable broad-spectrum neurodevelopmental disorder of the central and peripheral nervous systems in both familial and simplex cases of both sexes. Our results highlight the importance of ZC4H2 for genetic testing of individuals presenting with ID plus muscle weakness and minor or major forms of AMC.


Subject(s)
Abnormalities, Multiple/genetics , Arthrogryposis/genetics , Carrier Proteins/genetics , Genetic Predisposition to Disease/genetics , Intellectual Disability/genetics , Neuronal Plasticity/genetics , Zinc Fingers/genetics , Abnormalities, Multiple/pathology , Animals , Arthrogryposis/pathology , Cells, Cultured , Chromosome Breakpoints , Comparative Genomic Hybridization , Female , Haplotypes/genetics , High-Throughput Nucleotide Sequencing , Humans , Immunoblotting , In Situ Hybridization , Intellectual Disability/pathology , Intracellular Signaling Peptides and Proteins , Male , Mice , Mutation/genetics , Nuclear Proteins , Pedigree , Synapses/genetics , Zebrafish
2.
Hum Mutat ; 31(1): 90-8, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19847789

ABSTRACT

The polyglutamine binding protein 1 (PQBP1) gene plays an important role in X-linked mental retardation (XLMR). Nine of the thirteen PQBP1 mutations known to date affect the AG hexamer in exon 4 and cause frameshifts introducing premature termination codons (PTCs). However, the phenotype in this group of patients is variable. To investigate the pathology of these PQBP1 mutations, we evaluated their consequences on mRNA and protein expression. RT-PCRs revealed mutation-specific reduction of PQBP1 mRNAs carrying the PTCs that can be partially restored by blocking translation, thus indicating a role for the nonsense-mediated mRNA decay pathway. In addition, these mutations resulted in altered levels of PQBP1 transcripts that skipped exon 4, probably as a result of altering important splicing motifs via nonsense-associated altered splicing (NAS). This hypothesis is supported by transfection experiments using wild-type and mutant PQBP1 minigenes. Moreover, we show that a truncated PQBP1 protein is indeed present in the patients. Remarkably, patients with insertion/deletion mutations in the AG hexamer express significantly increased levels of a PQBP1 isoform, which is very likely encoded by the transcripts without exon 4, confirming the findings at the mRNA level. Our study provides significant insight into the early events contributing to the pathogenesis of the PQBP1 related XLMR disease.


Subject(s)
Carrier Proteins/genetics , Codon, Nonsense , Exons/genetics , Mental Retardation, X-Linked , Mutation , Nuclear Proteins/genetics , RNA Stability , Carrier Proteins/metabolism , Cell Line , DNA-Binding Proteins , Fibroblasts , Humans , Lymphocytes , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/pathology , Nuclear Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...