Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
J Pers Med ; 14(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38392562

ABSTRACT

Sarcomas are a heterogenous group of tumours that commonly carry poor prognosis with limited therapeutic options. Adolescents and young adults (AYAs) with sarcoma are a unique and understudied patient population that have only achieved modest survival gains compared to other groups. We present our institutional experience of AYAs with sarcoma who underwent comprehensive molecular profiling (CMP) via either large-panel targeted DNA sequencing or whole genome and transcriptome sequencing and evaluated the feasibility and clinical impact of this approach. Genomic variants detected were determined to be clinically relevant and actionable following evaluation by the Molecular Tumour Board. Clinicians provided feedback regarding the utility of testing three months after reporting. Twenty-five patients who were recruited for CMP are included in this analysis. The median time from consent to final molecular report was 45 days (interquartile range: 37-57). Potentially actionable variants were detected for 14 patients (56%), and new treatment recommendations were identified for 12 patients (48%). Pathogenic germline variants were identified in three patients (12%), and one patient had a change in diagnosis. The implementation of CMP for AYAs with sarcoma is clinically valuable, feasible, and should be increasingly integrated into routine clinical practice as technologies and turnaround times continue to improve.

2.
Lancet ; 403(10423): 261-270, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38065194

ABSTRACT

BACKGROUND: Adjuvant breast radiotherapy as a standard component of breast-conserving treatment for early cancer can overtreat many women. Breast MRI is the most sensitive modality to assess local tumour burden. The aim of this study was to determine whether a combination of MRI and pathology findings can identify women with truly localised breast cancer who can safely avoid radiotherapy. METHODS: PROSPECT is a prospective, multicentre, two-arm, non-randomised trial of radiotherapy omission in patients selected using preoperative MRI and postoperative tumour pathology. It is being conducted at four academic hospitals in Australia. Women aged 50 years or older with cT1N0 non-triple-negative breast cancer were eligible. Those with apparently unifocal cancer had breast-conserving surgery (BCS) and, if pT1N0 or N1mi, had radiotherapy omitted (group 1). Standard treatment including excision of MRI-detected additional cancers was offered to the others (group 2). All were recommended systemic therapy. The primary outcome was ipsilateral invasive recurrence rate (IIRR) at 5 years in group 1. Primary analysis occurred after the 100th group 1 patient reached 5 years follow-up. Quality-adjusted life-years (QALYs) and cost-effectiveness of the PROSPECT pathway were analysed. This study is registered with the Australian New Zealand Clinical Trials Registry (ACTRN12610000810011). FINDINGS: Between May 17, 2011, and May 6, 2019, 443 patients with breast cancer underwent MRI. Median age was 63·0 years. MRI detected 61 malignant occult lesions separate from the index cancer in 48 patients (11%). Of 201 group 1 patients who had BCS without radiotherapy, the IIRR at 5 years was 1·0% (upper 95% CI 5·4%). In group 1, one local recurrence occurred at 4·5 years and a second at 7·5 years. In group 2, nine patients had mastectomy (2% of total cohort), and the 5-year IIRR was 1·7% (upper 95% CI 6·1%). The only distant metastasis in the entire cohort was genetically distinct from the index cancer. The PROSPECT pathway increased QALYs by 0·019 (95% CI 0·008-0·029) and saved AU$1980 (95% CI 1396-2528) or £953 (672-1216) per patient. INTERPRETATION: PROSPECT suggests that women with unifocal breast cancer on MRI and favourable pathology can safely omit radiotherapy. FUNDING: Breast Cancer Trials, National Breast Cancer Foundation, Cancer Council Victoria, the Royal Melbourne Hospital Foundation, and the Breast Cancer Research Foundation.


Subject(s)
Breast Neoplasms , Female , Humans , Middle Aged , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Magnetic Resonance Imaging , Mastectomy , Mastectomy, Segmental/methods , Neoplasm Recurrence, Local/pathology , Neoplasm Staging , Prospective Studies , Radiotherapy, Adjuvant , Victoria , Aged
3.
Nat Cancer ; 4(9): 1326-1344, 2023 09.
Article in English | MEDLINE | ID: mdl-37640930

ABSTRACT

The lysyl oxidase family represents a promising target in stromal targeting of solid tumors due to the importance of this family in crosslinking and stabilizing fibrillar collagens and its known role in tumor desmoplasia. Using small-molecule drug-design approaches, we generated and validated PXS-5505, a first-in-class highly selective and potent pan-lysyl oxidase inhibitor. We demonstrate in vitro and in vivo that pan-lysyl oxidase inhibition decreases chemotherapy-induced pancreatic tumor desmoplasia and stiffness, reduces cancer cell invasion and metastasis, improves tumor perfusion and enhances the efficacy of chemotherapy in the autochthonous genetically engineered KPC model, while also demonstrating antifibrotic effects in human patient-derived xenograft models of pancreatic cancer. PXS-5505 is orally bioavailable, safe and effective at inhibiting lysyl oxidase activity in tissues. Our findings present the rationale for progression of a pan-lysyl oxidase inhibitor aimed at eliciting a reduction in stromal matrix to potentiate chemotherapy in pancreatic ductal adenocarcinoma.


Subject(s)
Pancreatic Diseases , Pancreatic Neoplasms , Humans , Gemcitabine , Protein-Lysine 6-Oxidase , Pancreatic Neoplasms/drug therapy
4.
Am J Hum Genet ; 110(3): 419-426, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36868206

ABSTRACT

Australian Genomics is a national collaborative partnership of more than 100 organizations piloting a whole-of-system approach to integrating genomics into healthcare, based on federation principles. In the first five years of operation, Australian Genomics has evaluated the outcomes of genomic testing in more than 5,200 individuals across 19 rare disease and cancer flagship studies. Comprehensive analyses of the health economic, policy, ethical, legal, implementation and workforce implications of incorporating genomics in the Australian context have informed evidence-based change in policy and practice, resulting in national government funding and equity of access for a range of genomic tests. Simultaneously, Australian Genomics has built national skills, infrastructure, policy, and data resources to enable effective data sharing to drive discovery research and support improvements in clinical genomic delivery.


Subject(s)
Genomics , Health Policy , Humans , Australia , Rare Diseases , Delivery of Health Care
6.
Cell Death Differ ; 30(5): 1155-1165, 2023 05.
Article in English | MEDLINE | ID: mdl-36828915

ABSTRACT

Epithelial-mesenchymal transition (EMT) is a continuum that includes epithelial, partial EMT, and mesenchymal states, each of which is associated with cancer progression, invasive capabilities, and ultimately, metastasis. We used a lineage-traced sporadic model of pancreatic cancer to generate a murine organoid biobank from primary and secondary tumors, including sublines that underwent partial EMT and complete EMT. Using an unbiased proteomics approach, we found that organoid morphology predicts the EMT state, and the solid organoids are associated with a partial EMT signature. We also observed that exogenous TGFß1 induces solid organoid morphology that is associated with changes in the S100 family, complete EMT, and the formation of high-grade tumors. S100A4 may be a useful biomarker for predicting EMT state, disease progression, and outcome in patients with pancreatic cancer.


Subject(s)
Pancreatic Neoplasms , S100 Proteins , Humans , Animals , Mice , S100 Proteins/genetics , S100 Proteins/metabolism , Epithelial-Mesenchymal Transition , Pancreatic Neoplasms/pathology , Cell Line, Tumor , Pancreatic Neoplasms
9.
Genome Med ; 14(1): 58, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35637530

ABSTRACT

BACKGROUND: Malignant pleural mesothelioma (MPM) has a poor overall survival with few treatment options. Whole genome sequencing (WGS) combined with the immune features of MPM offers the prospect of identifying changes that could inform future clinical trials. METHODS: We analysed somatic mutations from 229 MPM samples, including previously published data and 58 samples that had undergone WGS within this study. This was combined with RNA-seq analysis to characterize the tumour immune environment. RESULTS: The comprehensive genome analysis identified 12 driver genes, including new candidate genes. Whole genome doubling was a frequent event that correlated with shorter survival. Mutational signature analysis revealed SBS5/40 were dominant in 93% of samples, and defects in homologous recombination repair were infrequent in our cohort. The tumour immune environment contained high M2 macrophage infiltrate linked with MMP2, MMP14, TGFB1 and CCL2 expression, representing an immune suppressive environment. The expression of TGFB1 was associated with overall survival. A small subset of samples (less than 10%) had a higher proportion of CD8 T cells and a high cytolytic score, suggesting a 'hot' immune environment independent of the somatic mutations. CONCLUSIONS: We propose accounting for genomic and immune microenvironment status may influence therapeutic planning in the future.


Subject(s)
Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Pleural Neoplasms , Genomics , Humans , Lung Neoplasms/genetics , Mesothelioma/genetics , Pleural Neoplasms/genetics , Pleural Neoplasms/pathology , Tumor Microenvironment/genetics
11.
Blood ; 139(24): 3519-3531, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35192684

ABSTRACT

Transcriptome sequencing has identified multiple subtypes of B-progenitor acute lymphoblastic leukemia (B-ALL) of prognostic significance, but a minority of cases lack a known genetic driver. Here, we used integrated whole-genome (WGS) and -transcriptome sequencing (RNA-seq), enhancer mapping, and chromatin topology analysis to identify previously unrecognized genomic drivers in B-ALL. Newly diagnosed (n = 3221) and relapsed (n = 177) B-ALL cases with tumor RNA-seq were studied. WGS was performed to detect mutations, structural variants, and copy number alterations. Integrated analysis of histone 3 lysine 27 acetylation and chromatin looping was performed using HiChIP. We identified a subset of 17 newly diagnosed and 5 relapsed B-ALL cases with a distinct gene expression profile and 2 universal and unique genomic alterations resulting from aberrant recombination-activating gene activation: a focal deletion downstream of PAN3 at 13q12.2 resulting in CDX2 deregulation by the PAN3 enhancer and a focal deletion of exons 18-21 of UBTF at 17q21.31 resulting in a chimeric fusion, UBTF::ATXN7L3. A subset of cases also had rearrangement and increased expression of the PAX5 gene, which is otherwise uncommon in B-ALL. Patients were more commonly female and young adult with median age 35 (range,12-70 years). The immunophenotype was characterized by CD10 negativity and immunoglobulin M positivity. Among 16 patients with known clinical response, 9 (56.3%) had high-risk features including relapse (n = 4) or minimal residual disease >1% at the end of remission induction (n = 5). CDX2-deregulated, UBTF::ATXN7L3 rearranged (CDX2/UBTF) B-ALL is a high-risk subtype of leukemia in young adults for which novel therapeutic approaches are required.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adolescent , Adult , Aged , CDX2 Transcription Factor/genetics , Child , Chromatin , Female , Genomics/methods , Humans , Male , Middle Aged , Pol1 Transcription Initiation Complex Proteins , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis , Transcription Factors/genetics , Transcriptome , Young Adult
12.
Bioinform Adv ; 2(1): vbac005, 2022.
Article in English | MEDLINE | ID: mdl-36699384

ABSTRACT

Motivation: Changes in telomere length have been observed in cancer and can be indicative of mechanisms involved in carcinogenesis. Most methods used to estimate telomere length require laboratory analysis of DNA samples. Here, we present qmotif, a fast and easy tool that determines telomeric repeat sequences content as an estimate of telomere length directly from whole-genome sequencing. Results: qmotif shows similar results to quantitative PCR, the standard method for high-throughput clinical telomere length quantification. qmotif output correlates strongly with the output of other tools for determining telomere sequence content, TelSeq and TelomereHunter, but can run in a fraction of the time-usually under a minute. Availability and implementation: qmotif is implemented in Java and source code is available at https://github.com/AdamaJava/adamajava, with instructions on how to build and use the application available from https://adamajava.readthedocs.io/en/latest/. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

13.
Cancers (Basel) ; 13(19)2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34638463

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies. While immortalized cancer cell lines and genetically engineered murine models have increased our understanding of PDAC tumorigenesis, they do not recapitulate inter- and intra-patient heterogeneity. PDAC patient derived organoid (PDO) biobanks have overcome this hurdle, and provide an opportunity for the high throughput screening of potential new therapies. This review provides a summary of the PDAC PDO biobanks established to date, and discusses how they have advanced our understanding of PDAC biology. Looking forward, the development of coculturing techniques for specific immune or stromal cell populations will enable a better understanding of the crosstalk that occurs within the tumor microenvironment, and the impact of this crosstalk on treatment response.

14.
Cancers (Basel) ; 13(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34680285

ABSTRACT

The overall survival of pancreatic ductal adenocarcinoma (PDAC) remains poor and its incidence is rising. Targetable mutations in PDAC are rare, thus novel therapeutic approaches are needed. Protein arginine methyltransferase 5 (PRMT5) overexpression is associated with worse survival and inhibition of PRMT5 results in decreased cancer growth across multiple cancers, including PDAC. Emerging evidence also suggests that altered RNA processing is a driver in PDAC tumorigenesis and creates a partial dependency on this process. PRMT5 inhibition induces altered splicing and this vulnerability can be exploited as a novel therapeutic approach. Three possible biological pathways underpinning the action of PRMT5 inhibitors are discussed; c-Myc regulation appears central to its action in the PDAC setting. Whilst homozygous MTAP deletion and symmetrical dimethylation levels are associated with increased sensitivity to PRMT5 inhibition, neither measure robustly predicts its growth inhibitory response. The immunomodulatory effect of PRMT5 inhibitors on the tumour microenvironment will also be discussed, based on emerging evidence that PDAC stroma has a significant bearing on disease behaviour and response to therapy. Lastly, with the above caveats in mind, current knowledge gaps and the implications and rationales for PRMT5 inhibitor development in PDAC will be explored.

15.
Sci Adv ; 7(40): eabh0363, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34586840

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic, chemoresistant malignancy and is characterized by a dense, desmoplastic stroma that modulates PDAC progression. Here, we visualized transient manipulation of focal adhesion kinase (FAK), which integrates bidirectional cell-environment signaling, using intravital fluorescence lifetime imaging microscopy of the FAK-based Förster resonance energy transfer biosensor in mouse and patient-derived PDAC models. Parallel real-time quantification of the FUCCI cell cycle reporter guided us to improve PDAC response to standard-of-care chemotherapy at primary and secondary sites. Critically, micropatterned pillar plates and stiffness-tunable matrices were used to pinpoint the contribution of environmental cues to chemosensitization, while fluid flow­induced shear stress assessment, patient-derived matrices, and personalized in vivo models allowed us to deconstruct how FAK inhibition can reduce PDAC spread. Last, stratification of PDAC patient samples via Merlin status revealed a patient subset with poor prognosis that are likely to respond to FAK priming before chemotherapy.

16.
Commun Biol ; 4(1): 155, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536587

ABSTRACT

Here we report the DNA methylation profile of 84 sporadic pancreatic neuroendocrine tumors (PanNETs) with associated clinical and genomic information. We identified three subgroups of PanNETs, termed T1, T2 and T3, with distinct patterns of methylation. The T1 subgroup was enriched for functional tumors and ATRX, DAXX and MEN1 wild-type genotypes. The T2 subgroup contained tumors with mutations in ATRX, DAXX and MEN1 and recurrent patterns of chromosomal losses in half of the genome with no association between regions with recurrent loss and methylation levels. T2 tumors were larger and had lower methylation in the MGMT gene body, which showed positive correlation with gene expression. The T3 subgroup harboured mutations in MEN1 with recurrent loss of chromosome 11, was enriched for grade G1 tumors and showed histological parameters associated with better prognosis. Our results suggest a role for methylation in both driving tumorigenesis and potentially stratifying prognosis in PanNETs.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Neuroendocrine/genetics , DNA Methylation , Epigenesis, Genetic , Epigenome , Pancreatic Neoplasms/genetics , Carcinoma, Neuroendocrine/metabolism , Epigenomics , Genetic Predisposition to Disease , Humans , Neoplasm Grading , Pancreatic Neoplasms/pathology , Phenotype , Tumor Burden
18.
Mod Pathol ; 33(9): 1811-1821, 2020 09.
Article in English | MEDLINE | ID: mdl-32358589

ABSTRACT

There is now evidence that gene fusions activating the MAPK pathway are relatively common in pancreatic acinar cell carcinoma with potentially actionable BRAF or RET fusions being found in ~30%. We sought to investigate the incidence of RAF1 fusions in pancreatic malignancies with acinar cell differentiation. FISH testing for RAF1 was undertaken on 30 tumors comprising 25 'pure' acinar cell carcinomas, 2 mixed pancreatic acinar-neuroendocrine carcinomas, 1 mixed acinar cell-low grade neuroendocrine tumor and 2 pancreatoblastomas. RAF1 rearrangements were identified in 5 cases and confirmed by DNA and RNA sequencing to represent oncogenic fusions (GATM-RAF1, GOLGA4-RAF1, PDZRN3-RAF1, HERPUD1-RAF1 and TRIM33-RAF1) and to be mutually exclusive with BRAF and RET fusions, as well as KRAS mutations. Large genome-wide copy number changes were common and included 1q gain and/or 1p loss in all five RAF1 FISH-positive acinar cell carcinomas. RAF1 expression by immunohistochemistry was found in 3 of 5 (60%) of fusion-positive cases and no FISH-negative cases. Phospho-ERK1/2 expression was found in 4 of 5 RAF1-fusion-positive cases. Expression of both RAF1 and phospho-ERK1/2 was heterogeneous and often only detected at the tumor-stroma interface, thus limiting their clinical utility. We conclude that RAF1 gene rearrangements are relatively common in pancreatic acinar cell carcinomas (14.3% to 18.5% of cases) and can be effectively identified by FISH with follow up molecular testing. The combined results of several studies now indicate that BRAF, RET or RAF1 fusions occur in between one third and one-half of these tumors but are extremely rare in other pancreatic malignancies. As these fusions are potentially actionable with currently available therapies, a strong argument can be made to perform FISH or molecular testing on all pancreatic acinar cell carcinomas.


Subject(s)
Carcinoma, Acinar Cell/genetics , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins c-raf/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Carcinoma, Acinar Cell/pathology , Databases, Factual , Female , Gene Fusion , Gene Rearrangement , Humans , Male , Middle Aged , Pancreatic Neoplasms/pathology , Young Adult
19.
Nat Commun ; 10(1): 2723, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31222014

ABSTRACT

Non-genetic drug resistance is increasingly recognised in various cancers. Molecular insights into this process are lacking and it is unknown whether stable non-genetic resistance can be overcome. Using single cell RNA-sequencing of paired drug naïve and resistant AML patient samples and cellular barcoding in a unique mouse model of non-genetic resistance, here we demonstrate that transcriptional plasticity drives stable epigenetic resistance. With a CRISPR-Cas9 screen we identify regulators of enhancer function as important modulators of the resistant cell state. We show that inhibition of Lsd1 (Kdm1a) is able to overcome stable epigenetic resistance by facilitating the binding of the pioneer factor, Pu.1 and cofactor, Irf8, to nucleate new enhancers that regulate the expression of key survival genes. This enhancer switching results in the re-distribution of transcriptional co-activators, including Brd4, and provides the opportunity to disable their activity and overcome epigenetic resistance. Together these findings highlight key principles to help counteract non-genetic drug resistance.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Leukemic/drug effects , Leukemia, Myeloid, Acute/drug therapy , Trans-Activators/antagonists & inhibitors , Animals , Antineoplastic Agents/therapeutic use , Bone Marrow/pathology , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Epigenesis, Genetic/drug effects , Female , HEK293 Cells , Humans , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred C57BL , Sequence Analysis, RNA , Single-Cell Analysis , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription, Genetic/drug effects , Treatment Outcome , Xenograft Model Antitumor Assays
20.
Stem Cells Dev ; 28(3): 151-164, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30417748

ABSTRACT

The platypus (Ornithorhynchus anatinus) is an egg-laying monotreme mammal whose ancestors diverged ∼166 million years ago from the evolutionary pathway that eventually gave rise to both marsupial and eutherian mammals. Consequently, its genome is an extraordinary amalgam of both ancestral reptilian and derived mammalian features. To gain insight into the evolution of mammalian pluripotency, we have generated induced pluripotent stem cells from the platypus (piPSCs). Deep sequencing of the piPSC transcriptome revealed that piPSCs robustly express the core eutherian pluripotency factors POU5F1/OCT4, SOX2, and NANOG. Given the more extensive role of SOX3 over SOX2 in avian pluripotency, our data indicate that between 315 and 166 million years ago, primitive mammals replaced the role of SOX3 in the vertebrate pluripotency network with SOX2. DAX1/NR0B1 is not expressed in piPSCs and an analysis of the platypus DAX1 promoter revealed the absence of a proximal SOX2-binding DNA motif known to be critical for DAX1 expression in eutherian pluripotent stem cells, suggesting that the acquisition of SOX2 responsiveness by DAX1 has facilitated its recruitment into the pluripotency network of eutherians. Using the RNAseq data, we were also able to demonstrate that in both fibroblasts and piPSCs, the expression ratio of X chromosomes to autosomes (X1-5 X1-5:AA) is approximately equal to 1, indicating that there is no upregulation of X-linked genes. Finally, the RNAseq data also allowed us to explore the process of X-linked gene inactivation in the platypus, where we determined that for any given gene, there is no preference for silencing of the maternal or paternal allele; that is, within a population of cells, the silencing of X-linked genes is not imprinted.


Subject(s)
Cell Differentiation , Platypus , Pluripotent Stem Cells/cytology , Transcriptome , Animals , Cells, Cultured , DAX-1 Orphan Nuclear Receptor/genetics , DAX-1 Orphan Nuclear Receptor/metabolism , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Genomic Imprinting , Pluripotent Stem Cells/metabolism , SOX Transcription Factors/genetics , SOX Transcription Factors/metabolism , X Chromosome Inactivation
SELECTION OF CITATIONS
SEARCH DETAIL
...