Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Behav Neurosci ; 10: 38, 2016.
Article in English | MEDLINE | ID: mdl-27014000

ABSTRACT

While several studies have investigated mouse ultrasonic vocalizations (USVs) emitted by isolated pups or by males in mating contexts, studies of behavioral contexts other than mating and vocalization categories other than USVs have been limited. By improving our understanding of the vocalizations emitted by mice across behavioral contexts, we will better understand the natural vocal behavior of mice and better interpret vocalizations from mouse models of disease. Hypothesizing that mouse vocal behavior would differ depending on behavioral context, we recorded vocalizations from male CBA/CaJ mice across three behavioral contexts including mating, isolation, and restraint. We found that brief restraint elevated blood corticosterone levels of mice, indicating increased stress relative to isolation. Further, after 3 days of brief restraint, mice displayed behavioral changes indicative of stress. These persisted for at least 2 days after restraint. Contextual differences in mouse vocal behavior were striking and robust across animals. Thus, while USVs were the most common vocalization type across contexts, the spectrotemporal features of USVs were context-dependent. Compared to the mating context, vocalizations during isolation and restraint displayed a broader frequency range, with a greater emphasis on frequencies below 50 kHz. These contexts also included more non-USV vocal categories and different vocal patterns. We identified a new Mid-Frequency Vocalization, a tonal vocalization with fundamental frequencies below 18 kHz, which was almost exclusively emitted by mice undergoing restraint stress. These differences combine to form vocal behavior that is grossly different among behavioral contexts and may reflect the level of anxiety in these contexts.

2.
J Neurosci Methods ; 253: 206-17, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26165984

ABSTRACT

BACKGROUND: The acoustic startle reflex (ASR) is a rapid, involuntary movement to sound, found in many species. The ASR can be modulated by external stimuli and internal state, making it a useful tool in many disciplines. ASR data collection and interpretation varies greatly across laboratories making comparisons a challenge. NEW METHOD: Here we investigate the animal movement associated with a startle in mouse (CBA/CaJ). Movements were simultaneously captured with high-speed video and a piezoelectric startle plate. We also use simple mathematical extrapolations to convert startle data (force) into center of mass displacement ("height"), which incorporates the animal's mass. RESULTS: Startle plate force data revealed a stereotype waveform associated with a startle that contained three distinct peaks. This waveform allowed researchers to separate trials into 'startles' and 'no-startles' (termed 'manual classification). Fleiss' kappa and Krippendorff"s alpha (0.865 for both) indicate very good levels of agreement between researchers. Further work uses this waveform to develop an automated startle classifier. The automated classifier compares favorably with manual classification. A two-way ANOVA reveals no significant difference in the magnitude of the 3 peaks as classified by the manual and automated methods (P1: p=0.526, N1: p=0.488, P2: p=0.529). COMPARISON WITH EXISTING METHOD(S): The ability of the automated classifier was compared with three other commonly used classification methods; the automated classifier far outperformed these methods. CONCLUSIONS: The improvements made allow researchers to automatically separate startle data from noise, and normalize for an individual animal's mass. These steps ease inter-animal and inter-laboratory comparisons of startle data.


Subject(s)
Electronic Data Processing , Evoked Potentials, Auditory/physiology , Noise , Reflex, Startle/physiology , Acoustic Stimulation/methods , Analysis of Variance , Animals , Male , Mice , Mice, Inbred CBA , Time Factors , Video Recording
3.
Neurosci Lett ; 559: 152-7, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24315975

ABSTRACT

Age-related hearing loss (AHL) is a multifactorial disorder characterized by a decline in peripheral and central auditory function. Here, we examined synaptic transmission in DBA/2 mice, which carry the AHL8 gene, at the identifiable glutamatergic synapse in the medial nucleus of the trapezoid body (MNTB), a nucleus in the superior olivary complex critical for acoustic timing. Mice exhibited raised auditory brainstem thresholds by P14, soon after hearing onset. Excitatory postsynaptic currents were prolonged; however, postsynaptic excitability was normal. By P18, high-frequency hearing loss was evident. Coincident with the onset of hearing loss, MNTB principal neurons displayed changes in intrinsic firing properties. These results suggest that changes in transmission in the superior olivary complex are associated with early onset hearing loss.


Subject(s)
Auditory Pathways/growth & development , Auditory Pathways/pathology , Disease Models, Animal , Hearing Loss/pathology , Olivary Nucleus/growth & development , Olivary Nucleus/pathology , Animals , Animals, Newborn , Mice , Mice, Inbred CBA , Mice, Inbred DBA , Organ Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...