Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
2.
Mov Disord ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641910

ABSTRACT

BACKGROUND: Invasive treatments like radiofrequency stereotactic lesioning or deep brain stimulation of the globus pallidus internus can resolve drug-resistant status dystonicus (SD). However, these open procedures are not always feasible in patients with SD. OBJECTIVE: The aim was to report the safety and efficacy of simultaneous asleep bilateral transcranial magnetic resonance-guided focused ultrasound (MRgFUS) pallidotomy for life-threatening SD. METHODS: We performed bilateral simultaneous MRgFUS pallidotomy under general anesthesia in 2 young patients with pantothenate kinase-associated neurodegeneration and GNAO1 encephalopathy. Both patients had medically refractory SD and severe comorbidities contraindicating open surgery. RESULTS: SD resolved at 4 and 12 days after MRgFUS, respectively. Adverse events (intraoperative hypothermia and postoperative facial paralysis) were mild and transient. CONCLUSION: Bilateral simultaneous MRgFUS pallidotomy under general anesthesia is safe and may be a valid alternative therapeutic option for fragile patients. Further studies are needed to assess long-term efficacy of the procedure. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

3.
Front Neurol ; 15: 1356310, 2024.
Article in English | MEDLINE | ID: mdl-38595849

ABSTRACT

MRI-guided focused ultrasound (MRgFUS) lesioning is an innovative, safe and effective treatment which provides an innovative development in the field of minimally invasive stereotactic neurosurgery. Based on the application of focused ultrasound energy under full MR planning and thermal imaging control, unilateral lesioning of the thalamus, subthalamic nucleus, and globus pallidus is indicated for the treatment of movement disorders, including essential tremor, Parkinson's disease, and dystonia. We started to apply this technique in February 2019 for the treatment of patients with movement disorders. The authors developed a diagnostic therapeutic care pathway, which is herewith proposed and applied as an explication of standard clinical practice in use. The project was the result of the application of different methods such as Health Technology Assessment (HTA), Strengths, Weaknesses, Opportunities and Threats analysis (SWOT) and Demin -Plan, Do, Check, Act (PDCA) cycle. The aim of this project was to standardize the MRgFUS diagnostic-therapeutic pathway (DTP), describe its application and the appropriateness of different phases (patient selection, intervention phase and follow-up). Here, we described in detail our experience in the DTP application from 2019 up to now in 610 patients with movement disorders.

4.
Eur J Neurol ; 31(6): e16266, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38469975

ABSTRACT

BACKGROUND AND PURPOSE: Thalamic alterations have been reported as a major feature in presymptomatic and symptomatic patients carrying the C9orf72 mutation across the frontotemporal dementia-amyotrophic lateral sclerosis (ALS) spectrum. Specifically, the pulvinar, a high-order thalamic nucleus and timekeeper for large-scale cortical networks, has been hypothesized to be involved in C9orf72-related neurodegenerative diseases. We investigated whether pulvinar volume can be useful for differential diagnosis in ALS C9orf72 mutation carriers and noncarriers and how underlying functional connectivity changes affect this region. METHODS: We studied 19 ALS C9orf72 mutation carriers (ALSC9+) accurately matched with wild-type ALS (ALSC9-) and ALS mimic (ALSmimic) patients using structural and resting-state functional magnetic resonance imaging data. Pulvinar volume was computed using automatic segmentation. Seed-to-voxel functional connectivity analyses were performed using seeds from a pulvinar functional parcellation. RESULTS: Pulvinar structural integrity had high discriminative values for ALSC9+ patients compared to ALSmimic (area under the curve [AUC] = 0.86) and ALSC9- (AUC = 0.77) patients, yielding a volume cutpoint of approximately 0.23%. Compared to ALSmimic, ALSC9- showed increased anterior, inferior, and lateral pulvinar connections with bilateral occipital-temporal-parietal regions, whereas ALSC9+ showed no differences. ALSC9+ patients when compared to ALSC9- patients showed reduced pulvinar-occipital connectivity for anterior and inferior pulvinar seeds. CONCLUSIONS: Pulvinar volume could be a differential biomarker closely related to the C9orf72 mutation. A pulvinar-cortical circuit dysfunction might play a critical role in disease progression and development, in both the genetic phenotype and ALS wild-type patients.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Magnetic Resonance Imaging , Mutation , Pulvinar , Aged , Female , Humans , Male , Middle Aged , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/physiopathology , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/pathology , Heterozygote , Pulvinar/diagnostic imaging , Pulvinar/physiopathology , Pulvinar/pathology
6.
Article in English | MEDLINE | ID: mdl-38383154

ABSTRACT

BACKGROUND: Spinal cord damage is a feature of many spinocerebellar ataxias (SCAs), but well-powered in vivo studies are lacking and links with disease severity and progression remain unclear. Here we characterise cervical spinal cord morphometric abnormalities in SCA1, SCA2, SCA3 and SCA6 using a large multisite MRI dataset. METHODS: Upper spinal cord (vertebrae C1-C4) cross-sectional area (CSA) and eccentricity (flattening) were assessed using MRI data from nine sites within the ENIGMA-Ataxia consortium, including 364 people with ataxic SCA, 56 individuals with preataxic SCA and 394 nonataxic controls. Correlations and subgroup analyses within the SCA cohorts were undertaken based on disease duration and ataxia severity. RESULTS: Individuals in the ataxic stage of SCA1, SCA2 and SCA3, relative to non-ataxic controls, had significantly reduced CSA and increased eccentricity at all examined levels. CSA showed large effect sizes (d>2.0) and correlated with ataxia severity (r<-0.43) and disease duration (r<-0.21). Eccentricity correlated only with ataxia severity in SCA2 (r=0.28). No significant spinal cord differences were evident in SCA6. In preataxic individuals, CSA was significantly reduced in SCA2 (d=1.6) and SCA3 (d=1.7), and the SCA2 group also showed increased eccentricity (d=1.1) relative to nonataxic controls. Subgroup analyses confirmed that CSA and eccentricity are abnormal in early disease stages in SCA1, SCA2 and SCA3. CSA declined with disease progression in all, whereas eccentricity progressed only in SCA2. CONCLUSIONS: Spinal cord abnormalities are an early and progressive feature of SCA1, SCA2 and SCA3, but not SCA6, which can be captured using quantitative MRI.

7.
Mov Disord Clin Pract ; 11(1): 69-75, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38291839

ABSTRACT

BACKGROUND: Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy is increasingly used to treat drug-resistant essential tremor (ET). Data on MRgFUS thalamotomy in dystonic tremor (DT) are anecdotal. OBJECTIVES: To investigate efficacy, safety, and differences in target coordinates of MRgFUS thalamotomy in DT versus ET. METHODS: Ten patients with DT and 35 with ET who consecutively underwent MRgFUS thalamotomy were followed for 12 months. Although in both groups the initial surgical planning coordinates corresponded to the ventralis intermediate (Vim), the final target could be modified intraoperatively based on clinical response. RESULTS: Tremor significantly improved in both groups. The thalamic lesion was significantly more anterior in DT than ET. Considering both ET and DT groups, the more anterior the lesion, the lower the odds ratio for adverse events. CONCLUSIONS: MRgFUS thalamotomy is safe and effective in DT and ET. Compared to classical Vim coordinates used for ET, more anterior targeting should be considered for DT.


Subject(s)
Essential Tremor , Humans , Pilot Projects , Essential Tremor/diagnostic imaging , Prospective Studies , Tremor , Thalamus/diagnostic imaging
8.
Ann Clin Transl Neurol ; 11(3): 686-697, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38234062

ABSTRACT

OBJECTIVE: The resting-state functional connectome has not been extensively investigated in amyotrophic lateral sclerosis (ALS) spectrum disease, in particular in relationship with patients' genetic status. METHODS: Here we studied the network-to-network connectivity of 19 ALS patients carrying the C9orf72 hexanucleotide repeat expansion (C9orf72+), 19 ALS patients not affected by C9orf72 mutation (C9orf72-), and 19 ALS-mimic patients (ALSm) well-matched for demographic and clinical variables. RESULTS: When compared with ALSm, we observed greater connectivity of the default mode and frontoparietal networks with the visual network for C9orf72+ patients (P = 0.001). Moreover, the whole-connectome showed greater node degree (P < 0.001), while sensorimotor cortices resulted isolated in C9orf72+. INTERPRETATION: Our results suggest a crucial involvement of extra-motor functions in ALS spectrum disease. In particular, alterations of the visual cortex may have a pathogenic role in C9orf72-related ALS. The prominent feature of these patients would be increased visual system connectivity with the networks responsible of the functional balance between internal and external attention.


Subject(s)
Amyotrophic Lateral Sclerosis , Connectome , Humans , Magnetic Resonance Imaging , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/genetics , DNA Repeat Expansion/genetics , Proteins/genetics , Mutation
9.
BMJ Neurol Open ; 5(2): e000535, 2023.
Article in English | MEDLINE | ID: mdl-38027469

ABSTRACT

Background: Heterozygous mutations in the GBA gene, encoding the lysosomal enzyme ß-glucocerebrosidase (GCase), are the most frequent genetic risk factor for Parkinson's disease (PD). GBA-related PD (GBA-PD) patients have higher risk of dementia and reduced survival than non-carriers. Preclinical studies and one open-label trial in humans demonstrated that the chaperone ambroxol (ABX) increases GCase levels and modulates α-synuclein levels in the blood and cerebrospinal fluid (CSF). Methods and analysis: In this multicentre, double-blind, placebo-controlled, phase II clinical trial, we randomise patients with GBA-PD in a 1:1 ratio to either oral ABX 1.2 g/day or placebo. The duration of treatment is 52 weeks. Each participant is assessed at baseline and weeks 12, 26, 38, 52 and 78. Changes in the Montreal Cognitive Assessment score and the frequency of mild cognitive impairment and dementia between baseline and weeks 52 are the primary outcome measures. Secondary outcome measures include changes in validated scales/questionnaires assessing motor and non-motor symptoms. Neuroimaging features and CSF neurodegeneration markers are used as surrogate markers of disease progression. GCase activity, ABX and α-synuclein levels are also analysed in blood and CSF. A repeated-measures analysis of variance will be used for elaborating results. The primary analysis will be by intention to treat. Ethics and dissemination: The study and protocols have been approved by the ethics committee of centres. The study is conducted according to good clinical practice and the Declaration of Helsinki. The trial findings will be published in peer-reviewed journals and presented at conferences. Trial registration numbers: NCT05287503, EudraCT 2021-004565-13.

10.
Mov Disord ; 38(4): 665-675, 2023 04.
Article in English | MEDLINE | ID: mdl-36799493

ABSTRACT

BACKGROUND AND OBJECTIVES: Spinocerebellar ataxias (SCAs) are autosomal dominant disorders with extensive clinical and genetic heterogeneity. We recently identified a form of SCA transmitted with a digenic pattern of inheritance caused by the concomitant presence of an intermediate-length expansion in TATA-box binding protein gene (TBP40-46 ) and a heterozygous pathogenic variant in the Stip1-homologous and U-Box containing protein 1 gene (STUB1). This SCATBP/STUB1 represents the first example of a cerebellar disorder in which digenic inheritance has been identified. OBJECTIVES: We studied a large cohort of patients with SCATBP/STUB1 with the aim of describing specific clinical and neuroimaging features of this distinctive genotype. METHODS: In this observational study, we recruited 65 affected and unaffected family members from 21 SCATBP/STUB1 families and from eight families with monogenic SCA17. Their characteristics and phenotypes were compared with those of 33 age-matched controls. RESULTS: SCATBP/STUB1 patients had multi-domain dementia with a more severe impairment in respect to patient carrying only fully expanded SCA17 alleles. Cerebellar volume and thickness of cerebellar cortex were reduced in SCATBP/STUB1 compared with SCA17 patients (P = 0.03; P = 0.008). Basal ganglia volumes were reduced in both patient groups, as compared with controls, whereas brainstem volumes were significantly reduced in SCATBP/STUB1 , but not in SCA17 patients. CONCLUSIONS: The identification of the complex SCATBP/STUB1 phenotype may impact on diagnosis and genetic counseling in the families with both hereditary and sporadic ataxia. The independent segregation of TBP and STUB1 alleles needs to be considered for recurrence risk and predictive genetic tests. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Ataxia , Dementia , Spinocerebellar Ataxias , Humans , Ataxia/genetics , Dementia/genetics , Genotype , Phenotype , Spinocerebellar Ataxias/diagnostic imaging , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/metabolism , TATA-Box Binding Protein/genetics , TATA-Box Binding Protein/metabolism , Trinucleotide Repeat Expansion , Ubiquitin-Protein Ligases/genetics
11.
Alzheimers Dement ; 19(8): 3261-3271, 2023 08.
Article in English | MEDLINE | ID: mdl-36749840

ABSTRACT

INTRODUCTION: Sporadic Creutzfeldt-Jakob disease (sCJD) comprises multiple subtypes (MM1, MM2, MV1, MV2C, MV2K, VV1, and VV2) with distinct disease durations and spatiotemporal cascades of brain lesions. Our goal was to establish the ante mortem diagnosis of sCJD subtype, based on patient-specific estimates of the spatiotemporal cascade of lesions detected by diffusion-weighted magnetic resonance imaging (DWI). METHODS: We included 488 patients with autopsy-confirmed diagnosis of sCJD subtype and 50 patients with exclusion of prion disease. We applied a discriminative event-based model (DEBM) to infer the spatiotemporal cascades of lesions, derived from the DWI scores of 12 brain regions assigned by three neuroradiologists. Based on the DEBM cascades and the prion protein genotype at codon 129, we developed and validated a novel algorithm for the diagnosis of the sCJD subtype. RESULTS: Cascades of MM1, MM2, MV1, MV2C, and VV1 originated in the parietal cortex and, following subtype-specific orderings of propagation, went toward the striatum, thalamus, and cerebellum; conversely, VV2 and MV2K cascades showed a striatum-to-cortex propagation. The proposed algorithm achieved 76.5% balanced accuracy for the sCJD subtype diagnosis, with low rater dependency (differences in accuracy of ± 1% among neuroradiologists). DISCUSSION: Ante mortem diagnosis of sCJD subtype is feasible with this novel data-driven approach, and it may be valuable for patient prognostication, stratification in targeted clinical trials, and future therapeutics. HIGHLIGHTS: Subtype diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) is achievable with diffusion MRI. Cascades of diffusion MRI abnormalities in the brain are subtype-specific in sCJD. We proposed a diagnostic algorithm based on cascades of diffusion MRI abnormalities and demonstrated that it is accurate. Our method may aid early diagnosis, prognosis, stratification in clinical trials, and future therapeutics. The present approach is applicable to other neurodegenerative diseases, enhancing the differential diagnoses.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Humans , Creutzfeldt-Jakob Syndrome/diagnostic imaging , Magnetic Resonance Imaging , Brain/pathology
13.
Mov Disord ; 37(11): 2289-2295, 2022 11.
Article in English | MEDLINE | ID: mdl-36036203

ABSTRACT

BACKGROUND: Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy is a safe and effective procedure for drug-resistant tremor in Parkinson's disease (PD). OBJECTIVE: The aim of this study was to demonstrate that MRgFUS ventralis intermedius thalamotomy in early-stage tremor-dominant PD may prevent an increase in dopaminergic medication 6 months after treatment compared with matched PD control subjects on standard medical therapy. METHODS: We prospectively enrolled patients with early-stage PD who underwent MRgFUS ventralis intermedius thalamotomy (PD-FUS) and patients treated with oral dopaminergic therapy (PD-ODT) with a 1:2 ratio. We collected demographic and clinical data at baseline and 6 and 12 months after thalamotomy. RESULTS: We included 10 patients in the PD-FUS group and 20 patients in the PD-ODT group. We found a significant increase in total levodopa equivalent daily dose and levodopa plus monoamine oxidase B inhibitors dose in the PD-ODT group 6 months after thalamotomy. CONCLUSIONS: In early-stage tremor-dominant PD, MRgFUS thalamotomy may be useful to reduce tremor and avoid the need to increase dopaminergic medications. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Essential Tremor , Parkinson Disease , Humans , Tremor/drug therapy , Tremor/etiology , Tremor/surgery , Parkinson Disease/drug therapy , Parkinson Disease/surgery , Essential Tremor/drug therapy , Essential Tremor/surgery , Pilot Projects , Levodopa/therapeutic use , Thalamus/diagnostic imaging , Thalamus/surgery , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Treatment Outcome
15.
Neurol Sci ; 43(6): 3703-3716, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35088242

ABSTRACT

BACKGROUND: Rapidly progressive cognitive impairment is a diagnostic criterion in Creutzfeldt-Jakob disease (CJD), but the diagnosis is usually reached when an analysis of cognitive aspects is no longer possible. OBJECTIVE: This study aims to delineate the cognitive phenotypes preceding severe dementia in CJD compared to secondary metabolic encephalopathies (SME) with rapid cognitive impairment. METHODS: Patients with rapidly progressive neurological symptoms underwent neuropsychological evaluation, analysis of cerebrospinal fluid (CSF) and codon 129 polymorphism of the prion protein gene (PRNP), magnetic resonance imaging (MRI), and single positron emission computed tomography (99mTcSPECT). CSF real-time quaking-induced conversion analysis was applied in CJD patients. Based on literature and clinical expertise, cognitive profiles were correlated with brain areas. RESULTS: Thirty-one patients were diagnosed with CJD (n = 17) or SME; 77 cases of CJD were extracted from the literature. In patients with CJD, verbal initiative, lexical search, long-term memory, attention, and abstract reasoning were the most frequently impaired abilities. Cognitive profiles were mainly related to dysfunction in fronto-temporal areas. Furthermore, they were consistent with areas of hypoperfusion detected by 99mTc SPECT in six patients and cortical and subcortical MRI hyperintensities in eight and 14 patients, respectively, and were similar to those described in the literature. In contrast, cognitive profiles were different from those in SME characterized by visuospatial and constructive deficits relating to posterior brain areas. CONCLUSION: In CJD, clinical and neuropsychological analyses outline a salient cognitive phenotype suggestive of fronto-temporal dysfunction preceding severe dementia. This phenotype is different from that observed in other rapidly progressive encephalopathies.


Subject(s)
Brain Diseases, Metabolic , Creutzfeldt-Jakob Syndrome , Prions , Cognition , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/diagnostic imaging , Humans , Phenotype , Prions/genetics
16.
Cerebellum ; 21(1): 133-144, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34106418

ABSTRACT

Spinocerebellar ataxias type 1 (SCA1) is an autosomal dominant disease usually manifesting in adulthood. We performed a prospective 1-year longitudinal study in 14 presymptomatic mutation carriers (preSCA1), 11 ataxic patients, and 21 healthy controls. SCA1 patients had a median disease duration of 6 years (range 2-16) and SARA score of 7 points (range 3.5-20). PreSCA1 had an estimated time before disease onset of 9.7 years (range 4-30), and no signs of ataxia. At baseline, SCA1 patients significantly differed from controls in SARA score (Scale for Assessment and Rating of Ataxia), cognitive tests, and structural MRI measures. Significant volume loss was found in cerebellum, brainstem, basal ganglia, and cortical thinning in frontal, temporal, and occipital regions. PreSCA1 did not differ from controls. At 1-year follow-up, SCA1 patients showed significant increase in SARA score, and decreased volume of cerebellum (- 0.6%), pons (- 5.5%), superior cerebellar peduncles (- 10.7%), and midbrain (- 3.0%). Signs of disease progression were also observed in preSCA1 subjects, with increased SARA score and reduced total cerebellar volume. Our exploratory study suggests that clinical scores and MRI measures provide valuable data to monitor and quantify the earliest changes associated with the preclinical and the symptomatic phases of SCA1 disease.


Subject(s)
Spinocerebellar Ataxias , Adult , Disease Progression , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Prospective Studies , Spinocerebellar Ataxias/complications , Spinocerebellar Ataxias/diagnostic imaging , Spinocerebellar Ataxias/genetics
17.
Ann Neurol ; 89(3): 560-572, 2021 03.
Article in English | MEDLINE | ID: mdl-33274461

ABSTRACT

OBJECTIVE: Sporadic Creutzfeldt-Jakob disease (sCJD) comprises several subtypes as defined by genetic and prion protein characteristics, which are associated with distinct clinical and pathological phenotypes. To date, no clinical test can reliably diagnose the subtype. We established two procedures for the antemortem diagnosis of sCJD subtype using diffusion magnetic resonance imaging (MRI). METHODS: MRI of 1,458 patients referred to the National Prion Disease Pathology Surveillance Center were collected through its consultation service. One neuroradiologist blind to the diagnosis scored 12 brain regions and generated a lesion profile for each MRI scan. We selected 487 patients with autopsy-confirmed diagnosis of "pure" sCJD subtype and at least one positive diffusion MRI examination. We designed and tested two data-driven procedures for subtype diagnosis: the first procedure-prion subtype classification algorithm with MRI (PriSCA_MRI)-uses only MRI examinations; the second-PriSCA_MRI + Gen-includes knowledge of the prion protein codon 129 genotype, a major determinant of sCJD subtypes. Both procedures were tested on the first MRI and the last MRI follow-up. RESULTS: PriSCA_MRI classified the 3 most prevalent subtypes with 82% accuracy. PriSCA_MRI + Gen raised the accuracy to 89% and identified all subtypes. Individually, the 2 most prevalent sCJD subtypes, MM1 and VV2, were diagnosed with sensitivities up to 95 and 97%, respectively. The performances of both procedures did not change in 168 patients with longitudinal MRI studies when the last examination was used. INTERPRETATION: This study provides the first practical algorithms for antemortem diagnosis of sCJD subtypes. MRI diagnosis of subtype is likely to be attainable at early disease stages to prognosticate clinical course and design future therapeutic trials. ANN NEUROL 2021;89:560-572.


Subject(s)
Brain/diagnostic imaging , Creutzfeldt-Jakob Syndrome/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Prion Proteins/genetics , Aged , Creutzfeldt-Jakob Syndrome/classification , Creutzfeldt-Jakob Syndrome/genetics , Female , Genotype , Humans , Male , Middle Aged
19.
JAMA Neurol ; 77(9): 1141-1149, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32478816

ABSTRACT

Importance: Early diagnosis is a requirement for future treatment of prion diseases. Magnetic resonance imaging (MRI) with diffusion-weighted images and improved real-time quaking-induced conversion (RT-QuIC) in cerebrospinal fluid (CSF) have emerged as reliable tests. Objectives: To assess the sensitivity and specificity of diffusion MRI for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) with a new criterion (index test) of at least 1 positive brain region among the cortex of the frontal, parietal, temporal, and occipital lobes; the caudate; the putamen; and the thalamus. Design, Setting, and Participants: This diagnostic study with a prospective and a retrospective arm was performed from January 1, 2003, to October 31, 2018. MRIs were collected from 1387 patients with suspected sCJD consecutively referred to the National Prion Disease Pathology Surveillance Center as part of a consultation service. Intervention: Magnetic resonance imaging. Four neuroradiologists blinded to the diagnosis scored the MRIs of 200 randomly selected patients. One neuroradiologist scored the MRIs of all patients. Main Outcomes and Measures: Sensitivity and specificity of the index test compared with currently used criteria and CSF diagnostic (improved RT-QuIC, 14-3-3, and tau CSF tests). Results: A total of 872 patients matched the inclusion criteria (diffusion MRI and autopsy-confirmed diagnosis), with 619 having sCJD, 102 having other prion diseases, and 151 having nonprion disease. The primary analysis included 200 patients (mean [SD] age, 63.6 [12.9] years; 100 [50.0%] male). Sensitivity of the index test of 4 neuroradiologists was 90% to 95% and superior to sensitivity of current MRI criteria (69%-76%), whereas specificity was 90% to 100% and unchanged. Interrater reliability of the 4 neuroradiologists was high (κ = 0.81), and individual intrarater reliability was excellent (κ ≥0.87). The sensitivity of the index test of 1 neuroradiologist for 770 patients was 92.1% (95% CI, 89.7%-94.1%) and the specificity was 97.4% (95% CI, 93.4%-99.3%) compared with a sensitivity of 69.8% (95% CI, 66.0%-73.4%; P < .001) and a specificity of 98.0% (95% CI, 94.3%-99.6%; P > .99) according to the current criteria. For 88 patients, index test sensitivity (94.9%; 95% CI, 87.5%-98.6%) and specificity (100%; 95% CI, 66.4%-100%) were similar to those of improved RT-QuIC (86.1% [95% CI, 76.5%-92.8%] and 100% [95% CI, 66.4%-100%], respectively). Lower specificities were found for 14-3-3 and tau CSF tests in 452 patients. Conclusions and Relevance: In this study, the diagnostic performance of diffusion MRI with the new criterion was superior to that of current standard criteria and similar to that of improved RT-QuIC. These results may have important clinical implications because MRI is noninvasive and typically prescribed at disease presentation.


Subject(s)
Cerebral Cortex/diagnostic imaging , Creutzfeldt-Jakob Syndrome/cerebrospinal fluid , Creutzfeldt-Jakob Syndrome/diagnostic imaging , Diffusion Magnetic Resonance Imaging/standards , Gray Matter/diagnostic imaging , Practice Guidelines as Topic/standards , Aged , Creutzfeldt-Jakob Syndrome/pathology , Female , Humans , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity
20.
Clin Neurophysiol ; 131(7): 1548-1555, 2020 07.
Article in English | MEDLINE | ID: mdl-32408088

ABSTRACT

OBJECTIVE: In patients with spinocerebellar ataxia type 1 or 2 (SCA1 or SCA2) and in their asymptomatic gene-positive relatives (AsyRs) we investigated the event-related desynchronization and synchronisation (ERD/ERS) on magnetoencephalographic signals to assess the changes occurring before manifest ataxia, by comparing the results obtained in AsyRs and in their gene-negative healthy relatives (HRs). METHODS: Twenty-four patients (12 SCA1, 12 SCA2), 24 AsyRs (13 SCA1, 11 SCA2) and 17 HRs performed a visually cued Go/No-go task. We evaluated the ERD/ERS in regions of interest corresponding to the frontal, central and parietal cortices. RESULTS: In the SCA patients the main findings were a loss of side predominance for alpha and beta ERD and significantly weakened beta ERS. In AsyRs the main finding was a significantly enhanced alpha ERD, namely in those who were approaching the estimated time of symptom onset. CONCLUSIONS: In ataxic patients, the loss of ERD lateralisation and the significantly reduction of beta ERS suggest defective bilateral processes that are involved in ending the movement. In AsyRs, enhanced alpha ERD proposes the presence of preclinical marker closely preceding symptom onset. SIGNIFICANCE: Movement-related ERD/ERS can detect the defective sensorimotor integration in ataxic patients, and reveals possible compensatory mechanisms in their AsyRs.


Subject(s)
Brain Waves , Mutation , Spinocerebellar Ataxias/physiopathology , Adult , Asymptomatic Diseases , Ataxin-1/genetics , Ataxin-2/genetics , Cerebral Cortex/physiopathology , Female , Heterozygote , Humans , Magnetoencephalography/methods , Male , Middle Aged , Movement , Spinocerebellar Ataxias/diagnosis , Spinocerebellar Ataxias/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...