Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Crit Care ; 79: 154438, 2024 02.
Article in English | MEDLINE | ID: mdl-37797404

ABSTRACT

PURPOSE: Gut can be a source of sepsis but sepsis itself can induce gut dysfunction. We aimed to study whether plasma citrulline, a marker of enterocyte mass, was correlated with plasma lipopolysaccharide, a potential marker of bacterial translocation among critically ill patients. MATERIALS AND METHODS: Critically ill patients admitted to the ICU. Plasma citrulline and plasma LPS concentration and activity were measured at ICU admission. Patients were compared according to the presence of sepsis at ICU admission. RESULTS: 109 critically ill patients, with SOFA score 8 [6-12], were prospectively included. Sixty six patients (61%) had sepsis at ICU admission. There was no correlation between plasma citrulline concentration and plasma LPS concentration or activity. However, sepsis at ICU admission was associated with a lower plasma citrulline concentration (13.4 µmol.L-1 vs 21.3 µmol.L-1, p = 0.02). Plasma LPS activity was significantly higher among patients with abdominal sepsis compared to patients with extra-abdominal sepsis (1.04 EU/mL vs 0.63, p = 0.01). CONCLUSIONS: Plasma citrulline is not associated with the level of plasma LPS but is strongly decreased among septic patients. Detection of LPS is ubiquitous among critically ill patients but abdominal sepsis is associated with increased plasma LPS activity compared to extra-abdominal sepsis.


Subject(s)
Gastrointestinal Diseases , Sepsis , Humans , Lipopolysaccharides , Citrulline , Critical Illness , Intensive Care Units
2.
Int J Mol Sci ; 24(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36982420

ABSTRACT

The gastrointestinal tract constitutes a large interface with the inner body and is a crucial barrier against gut microbiota and other pathogens. As soon as this barrier is damaged, pathogen-associated molecular patterns (PAMPs) are recognized by immune system receptors, including toll-like receptors (TLRs). Glucagon-like peptide 1 (GLP-1) is an incretin that was originally involved in glucose metabolism and recently shown to be rapidly and strongly induced by luminal lipopolysaccharides (LPS) through TLR4 activation. In order to investigate whether the activation of TLRs other than TLR4 also increases GLP-1 secretion, we used a polymicrobial infection model through cecal ligation puncture (CLP) in wild-type and TLR4-deficient mice. TLR pathways were assessed by intraperitoneal injection of specific TLR agonists in mice. Our results show that CLP induces GLP-1 secretion both in wild-type and TLR4-deficient mice. CLP and TLR agonists increase gut and systemic inflammation. Thus, the activation of different TLRs increases GLP-1 secretion. This study highlights for the first time that, in addition to an increased inflammatory status, CLP and TLR agonists also strongly induce total GLP-1 secretion. Microbial-induced GLP-1 secretion is therefore not only a TLR4/LPS-cascade.


Subject(s)
Lipopolysaccharides , Toll-Like Receptor 4 , Animals , Mice , Toll-Like Receptor 4/metabolism , Glucagon-Like Peptide 1/metabolism , Toll-Like Receptors/metabolism , Adjuvants, Immunologic , Mice, Inbred C57BL
3.
Int J Mol Sci ; 23(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36362012

ABSTRACT

Bacterial lipopolysaccharides (LPS, endotoxins) are found in high amounts in the gut lumen. LPS can cross the gut barrier and pass into the blood (endotoxemia), leading to low-grade inflammation, a common scheme in metabolic diseases. Phospholipid transfer protein (PLTP) can transfer circulating LPS to plasma lipoproteins, thereby promoting its detoxification. However, the impact of PLTP on the metabolic fate and biological effects of gut-derived LPS is unknown. This study aimed to investigate the influence of PLTP on low-grade inflammation, obesity and insulin resistance in relationship with LPS intestinal translocation and metabolic endotoxemia. Wild-type (WT) mice were compared with Pltp-deficient mice (Pltp-KO) after a 4-month high-fat (HF) diet or oral administration of labeled LPS. On a HF diet, Pltp-KO mice showed increased weight gain, adiposity, insulin resistance, lipid abnormalities and inflammation, together with a higher exposure to endotoxemia compared to WT mice. After oral administration of LPS, PLTP deficiency led to increased intestinal translocation and decreased association of LPS to lipoproteins, together with an altered catabolism of triglyceride-rich lipoproteins (TRL). Our results show that PLTP, by modulating the intestinal translocation of LPS and plasma processing of TRL-bound LPS, has a major impact on low-grade inflammation and the onset of diet-induced metabolic disorders.


Subject(s)
Diet, High-Fat , Endotoxemia , Inflammation , Insulin Resistance , Weight Gain , Animals , Mice , Diet, High-Fat/adverse effects , Endotoxemia/chemically induced , Endotoxemia/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Insulin Resistance/physiology , Lipopolysaccharides/adverse effects , Lipoproteins/metabolism , Obesity/etiology , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/metabolism , Weight Gain/physiology
4.
Antioxid Redox Signal ; 37(4-6): 349-369, 2022 08.
Article in English | MEDLINE | ID: mdl-35166124

ABSTRACT

Aims: Although prebiotics, probiotics, and fecal transplantation can alter the sensation of hunger and/or feeding behavior, the role of the constitutive gut microbiota in the short-term regulation of food intake during normal physiology is still unclear. Results: An antibiotic-induced microbiota depletion study was designed to compare feeding behavior in conventional and microbiota-depleted mice. Tissues were sampled to characterize the time profile of microbiota-derived signals in mice during consumption of either standard or high-fat food for 1 h. Pharmacological and genetic tools were used to evaluate the contribution of postprandial endotoxemia and inflammatory responses in the short-term regulation of food intake. We observed constitutive microbial and macronutrient-dependent control of food intake at the time scale of a meal; that is, within 1 h of food introduction. Specifically, microbiota depletion increased food intake, and the microbiota-derived anorectic effect became significant during the consumption of high-fat but not standard food. This anorectic effect correlated with a specific postprandial microbial metabolic signature, and did not require postprandial endotoxemia or an NOD-, LRR-, and Pyrin domain-containing protein 3-inflammasome-mediated inflammatory response. Innovation and Conclusion: These findings show that the gut microbiota controls host appetite at the time scale of a meal under normal physiology. Interestingly, a microbiota-derived anorectic effect develops specifically with a high-fat meal, indicating that gut microbiota activity is involved in the satietogenic properties of foods. Antioxid. Redox Signal. 37, 349-369.


Subject(s)
Appetite Depressants , Endotoxemia , Microbiota , Animals , Eating , Glucagon-Like Peptide 1 , Inflammation , Mice , Mice, Inbred NOD , Oxidative Stress
5.
Front Cardiovasc Med ; 8: 756269, 2021.
Article in English | MEDLINE | ID: mdl-34712716

ABSTRACT

Introduction: Lipopolysaccharide (LPS) is a component of gram-negative bacteria, known for its ability to trigger inflammation. The main pathway of LPS clearance is the reverse lipopolysaccharide transport (RLT), with phospholipid transfer protein (PLTP) and lipoproteins playing central roles in this process in experimental animal models. To date, the relevance of this pathway has never been studied in humans. Cardiac surgery with cardiopulmonary bypass is known to favor LPS digestive translocation. Our objective was to determine whether pre-operative PLTP activity and triglyceride or cholesterol-rich lipoprotein concentrations were associated to LPS concentrations in patients undergoing cardiac surgery with cardiopulmonary bypass. Methods: A post-hoc analysis was conducted on plasma samples obtained from patients recruited in a randomized controlled trial.Total cholesterol, high density lipoprotein cholesterol (HDLc), low density lipoprotein cholesterol (LDLc), triglyceride and PLTP activity were measured before surgery. LPS concentration was measured by mass spectrometry before surgery, at the end of cardiopulmonary bypass and 24 h after admission to the intensive care unit. Results: High PLTP activity was associated with lower LPS concentration but not with inflammation nor post-operative complications. HDLc, LDLc and total cholesterol were not associated with LPS concentration but were lower in patients developing post-operative adverse events. HDLc was negatively associated with inflammation biomarkers (CRP, PCT). Triglyceride concentrations were positively correlated with LPS concentration, PCT and were higher in patients with post-operative complications. Conclusion: Our study supports the role of PLTP in LPS elimination and the relevance of RLT in human. PLTP activity, and not cholesterol rich lipoproteins pool size seemed to be the limiting factor for RLT. PLTP activity was not directly related to post-operative inflammation and adverse events, suggesting that LPS clearance is not the main driver of inflammation in our patients. However, HDLc was associated with lower inflammation and was associated with favorable outcomes, suggesting that HDL beneficial anti-inflammatory effects could be, at least in part independent of LPS clearance.

6.
Int J Mol Sci ; 22(13)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34281217

ABSTRACT

BACKGROUND AND AIMS: Hypercholesterolemia is a major risk factor for atherosclerosis and cardiovascular diseases. Although resistant to hypercholesterolemia, the mouse is a prominent model in cardiovascular research. To assess the contribution of bile acids to this protective phenotype, we explored the impact of a 2-week-long dietary cholesterol overload on cholesterol and bile acid metabolism in mice. METHODS: Bile acid, oxysterol, and cholesterol metabolism and transport were assessed by quantitative real-time PCR, western blotting, GC-MS/MS, or enzymatic assays in the liver, the gut, the kidney, as well as in the feces, the blood, and the urine. RESULTS: Plasma triglycerides and cholesterol levels were unchanged in mice fed a cholesterol-rich diet that contained 100-fold more cholesterol than the standard diet. In the liver, oxysterol-mediated LXR activation stimulated the synthesis of bile acids and in particular increased the levels of hydrophilic muricholic acids, which in turn reduced FXR signaling, as assessed in vivo with Fxr reporter mice. Consequently, biliary and basolateral excretions of bile acids and cholesterol were increased, whereas portal uptake was reduced. Furthermore, we observed a reduction in intestinal and renal bile acid absorption. CONCLUSIONS: These coordinated events are mediated by increased muricholic acid levels which inhibit FXR signaling in favor of LXR and SREBP2 signaling to promote efficient fecal and urinary elimination of cholesterol and neo-synthesized bile acids. Therefore, our data suggest that enhancement of the hydrophilic bile acid pool following a cholesterol overload may contribute to the resistance to hypercholesterolemia in mice. This work paves the way for new therapeutic opportunities using hydrophilic bile acid supplementation to mitigate hypercholesterolemia.


Subject(s)
Bile Acids and Salts/metabolism , Cholesterol, Dietary/adverse effects , Cholic Acids/therapeutic use , Hypercholesterolemia/prevention & control , Animals , Cholesterol, Dietary/metabolism , Drug Evaluation, Preclinical , Hypercholesterolemia/etiology , Male , Mice, Inbred C57BL , Receptors, Cytoplasmic and Nuclear/metabolism
7.
J Gastroenterol ; 56(5): 442-455, 2021 05.
Article in English | MEDLINE | ID: mdl-33782752

ABSTRACT

BACKGROUND: We previously showed that supernatants of Lactobacillus biofilms induced an anti-inflammatory response by affecting the secretion of macrophage-derived cytokines, which was abrogated upon immunodepletion of the stress protein GroEL. METHODS: We purified GroEL from L. reuteri and analysed its anti-inflammatory properties in vitro in human macrophages isolated from buffy coats, ex vivo in explants from human biopsies and in vivo in a mouse model of DSS induced intestinal inflammation. As a control, we used GroEL purified (LPS-free) from E. coli. RESULTS: We found that L. reuteri GroEL (but not E. coli GroEL) inhibited pro-inflammatory M1-like macrophages markers, and favored M2-like markers. Consequently, L. reuteri GroEL inhibited pro-inflammatory cytokines (TNFα, IL-1ß, IFNγ) while favouring an anti-inflammatory secretome. In colon tissues from human biopsies, L. reuteri GroEL was also able to decrease markers of inflammation and apoptosis (caspase 3) induced by LPS. In mice, we found that rectal administration of L. reuteri GroEL (but not E. coli GroEL) inhibited all signs of haemorrhagic colitis induced by DSS including intestinal mucosa degradation, rectal bleeding and weight loss. It also decreased intestinal production of inflammatory cytokines (such as IFNγ) while increasing anti-inflammatory IL-10 and IL-13. These effects were suppressed when animals were immunodepleted in macrophages. From a mechanistic point of view, the effect of L. reuteri GroEL seemed to involve TLR4, since it was lost in TRL4-/- mice, and the activation of a non-canonical TLR4 pathway. CONCLUSIONS: L. reuteri GroEL, by affecting macrophage inflammatory features, deserves to be explored as an alternative to probiotics.


Subject(s)
Chaperonin 60/pharmacology , Colon/drug effects , Inflammation/prevention & control , Lactobacillus/metabolism , Animals , Chaperonin 60/therapeutic use , Colon/physiopathology , Disease Models, Animal , Inflammation/drug therapy , Limosilactobacillus reuteri/drug effects , Limosilactobacillus reuteri/metabolism , Mice, Inbred BALB C , Statistics, Nonparametric
8.
J Lipid Res ; 62: 100013, 2021.
Article in English | MEDLINE | ID: mdl-33518513

ABSTRACT

Recent studies have highlighted an important role for lysophosphatidylcholine acyltransferase 3 (LPCAT3) in controlling the PUFA composition of cell membranes in the liver and intestine. In these organs, LPCAT3 critically supports cell-membrane-associated processes such as lipid absorption or lipoprotein secretion. However, the role of LPCAT3 in macrophages remains controversial. Here, we investigated LPCAT3's role in macrophages both in vitro and in vivo in mice with atherosclerosis and obesity. To accomplish this, we used the LysMCre strategy to develop a mouse model with conditional Lpcat3 deficiency in myeloid cells (Lpcat3KOMac). We observed that partial Lpcat3 deficiency (approximately 75% reduction) in macrophages alters the PUFA composition of all phospholipid (PL) subclasses, including phosphatidylinositols and phosphatidylserines. A reduced incorporation of C20 PUFAs (mainly arachidonic acid [AA]) into PLs was associated with a redistribution of these FAs toward other cellular lipids such as cholesteryl esters. Lpcat3 deficiency had no obvious impact on macrophage inflammatory response or endoplasmic reticulum (ER) stress; however, Lpcat3KOMac macrophages exhibited a reduction in cholesterol efflux in vitro. In vivo, myeloid Lpcat3 deficiency did not affect atherosclerosis development in LDL receptor deficient mouse (Ldlr-/-) mice. Lpcat3KOMac mice on a high-fat diet displayed a mild increase in hepatic steatosis associated with alterations in several liver metabolic pathways and in liver eicosanoid composition. We conclude that alterations in AA metabolism along with myeloid Lpcat3 deficiency may secondarily affect AA homeostasis in the whole liver, leading to metabolic disorders and triglyceride accumulation.


Subject(s)
1-Acylglycerophosphocholine O-Acyltransferase
9.
J Lipid Res ; 62: 100011, 2021.
Article in English | MEDLINE | ID: mdl-33500240

ABSTRACT

Bacterial lipopolysaccharides (LPSs or endotoxins) can bind most proteins of the lipid transfer/LPS-binding protein (LT/LBP) family in host organisms. The LPS-bound LT/LBP proteins then trigger either an LPS-induced proinflammatory cascade or LPS binding to lipoproteins that are involved in endotoxin inactivation and detoxification. Cholesteryl ester transfer protein (CETP) is an LT/LBP member, but its impact on LPS metabolism and sepsis outcome is unclear. Here, we performed fluorescent LPS transfer assays to assess the ability of CETP to bind and transfer LPS. The effects of intravenous (iv) infusion of purified LPS or polymicrobial infection (cecal ligation and puncture [CLP]) were compared in transgenic mice expressing human CETP and wild-type mice naturally having no CETP activity. CETP displayed no LPS transfer activity in vitro, but it tended to reduce biliary excretion of LPS in vivo. The CETP expression in mice was associated with significantly lower basal plasma lipid levels and with higher mortality rates in both models of endotoxemia and sepsis. Furthermore, CETPTg plasma modified cytokine production of macrophages in vitro. In conclusion, despite having no direct LPS binding and transfer property, human CETP worsens sepsis outcomes in mice by altering the protective effects of plasma lipoproteins against endotoxemia, inflammation, and infection.


Subject(s)
Cholesterol Ester Transfer Proteins
10.
Eur J Nutr ; 60(4): 2013-2027, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32989473

ABSTRACT

PURPOSE: Fatty acid esters of hydroxy fatty acids (FAHFAs) are a large family of endogenous bioactive lipids. To date, most of the studied FAHFAs are branched regioisomers of Palmitic Acid Hydroxyl Stearic Acid (PAHSA) that were reported to possess anti-diabetic and anti-inflammatory activity in humans and rodents. Recently, we have demonstrated that 9-PAHPA or 9-OAHPA intake increased basal metabolism and enhanced insulin sensitivity in healthy control diet-fed mice but induced liver damage in some mice. The present work aims to explore whether a long-term intake of 9-PAHPA or 9-OAHPA may have similar effects in obesogenic diet-fed mice. METHODS: C57Bl6 mice were fed with a control or high fat-high sugar (HFHS) diets for 12 weeks. The HFHS diet was supplemented or not with 9-PAHPA or 9-OAHPA. Whole-body metabolism was explored. Glucose and lipid metabolism as well as mitochondrial activity and oxidative stress status were analyzed. RESULTS: As expected, the intake of HFHS diet led to obesity and lower insulin sensitivity with minor effects on liver parameters. The long-term intake of 9-PAHPA or 9-OAHPA modulated favorably the basal metabolism and improved insulin sensitivity as measured by insulin tolerance test. On the contrary to what we have reported previously in healthy mice, no marked effect for these FAHFAs was observed on liver metabolism of obese diabetic mice. CONCLUSION: This study indicates that both 9-PAHPA and 9-OAHPA may have interesting insulin-sensitizing effects in obese mice with lower insulin sensitivity.


Subject(s)
Diabetes Mellitus, Experimental , Insulin Resistance , Animals , Basal Metabolism , Diabetes Mellitus, Experimental/metabolism , Insulin/metabolism , Lipid Metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL
11.
Cytokine ; 133: 155182, 2020 09.
Article in English | MEDLINE | ID: mdl-32593118

ABSTRACT

INTRODUCTION: Cardiac surgery with cardiopulmonary bypass (CPB) is associated with gut barrier dysfunction. Gut barrier dysfunction might be estimated non-invasively by lipopolysaccharide (LPS) plasma concentration. Glucagon-like peptide-1 (GLP-1) is a gut secreted hormone that is a potential marker of mucosal integrity. Our objective was to evaluate GLP-1 as a peri-operative marker of gut barrier dysfunction in patients undergoing cardiac surgery with CPB. METHODS: GLP-1, intestinal fatty acid binding protein (I-FABP) and lipopolysaccharide were assayed: at induction, after CPB and 24 h after admission in the intensive care unit. The primary end-point was peri-operative lipopolysaccharide concentration (LPS concentration at those 3 time points). RESULTS: Seventy-two patients were included in the present analysis. The highest measured post-operative GLP-1 concentration was in the sample taken 24 h after admission to intensive care, which was associated with peri-operative lipopolysaccharide plasma concentration. Patients who had the highest GLP-1 concentrations at 24 h experienced more severe inflammation and worse clinical outcomes. CONCLUSION: Our study supports that GLP-1 is not only a hormone of glucose metabolism but is also secreted when gut barrier is impaired in cardiac surgery with CPB. The GLP-1 levels measured 24 h after admission to the intensive care unit were associated with LPS concentration, inflammation and clinical outcomes.


Subject(s)
Glucagon-Like Peptide 1/metabolism , Inflammation/metabolism , Lipopolysaccharides/metabolism , Aged , Biomarkers/metabolism , Cardiac Surgical Procedures/methods , Cardiopulmonary Bypass/methods , Female , Humans , Male , Middle Aged , Prospective Studies
12.
J Nutr Biochem ; 79: 108361, 2020 05.
Article in English | MEDLINE | ID: mdl-32179409

ABSTRACT

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are a new family of endogenous lipids recently discovered. Several studies reported that some FAHFAs have antidiabetic and anti-inflammatory effects. The objective of this study was to explore the impact of two FAHFAs, 9-PAHPA or 9-OAHPA, on the metabolism of mice. C57Bl/6J male mice, 6 weeks old, were divided into 3 groups of 10 mice each. One group received a control diet and the two others groups received the control diet supplemented with 9-PAHPA or 9-OAHPA for 12 weeks. Mouse weight and body composition were monitored throughout the study. Some days before euthanasia, energy expenditure, glucose tolerance and insulin sensitivity were also determined. After sacrifice, blood and organs were collected for relevant molecular, biochemical and histological analyses. Although high intake of 9-PAHPA or 9-OAHPA increased basal metabolism, it had no direct effect on body weight. Interestingly, the 9-PAHPA or 9-OAHPA intake increased insulin sensitivity but without modifying glucose tolerance. Nevertheless, 9-PAHPA intake induced a loss of glucose-stimulated insulin secretion. Surprisingly, both studied FAHFAs induced hepatic steatosis and fibrosis in some mice, which were more marked with 9-PAHPA. Finally, a slight remodeling of white adipose tissue was also observed with 9-PAHPA intake. In conclusion, the long-term high intake of 9-PAHPA or 9-OAHPA increased basal metabolism and insulin sensitivity in healthy mice. However, this effect, highly likely beneficial in a diabetic state, was accompanied by manifest liver damage in certain mice that should deserve special attention in both healthy and pathological studies.


Subject(s)
Basal Metabolism/drug effects , Fatty Acids/pharmacology , Insulin Resistance , Liver/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Blood Glucose/analysis , Body Weight/drug effects , Energy Metabolism , Fatty Acids/administration & dosage , Fatty Acids/adverse effects , Fatty Liver/metabolism , Glucose Tolerance Test , Homeostasis , Inflammation/metabolism , Insulin/metabolism , Lipid Metabolism , Liver Cirrhosis/metabolism , Male , Mice , Mice, Inbred C57BL
13.
Biochimie ; 159: 107-111, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30447282

ABSTRACT

Intestinal ischemia, also called mesenteric ischemia, is a severe gastrointestinal and vascular medical emergency caused by a sudden decrease of blood flow through the mesenteric vessels. It generates hypoperfusion of intestinal tissues and can rapidly progress to intestinal wall infarction, systemic inflammation or even death if not treated in time. The mortality of this condition is still considerably high despite all the medical advances of the past few years. This is partially due to the difficulty of diagnosing early stage mesenteric ischemia. Indeed, a speedy and correct diagnosis is decisive for suitable medical care. However, early symptoms are unspecific and conventional clinical markers are neither specific nor sensitive enough. In the last few years, significant clinical and preclinical efforts have been made to find biomarkers which could predict gastrointestinal damage before it becomes irreversible. Here, the gut-derived hormone glucagon-like peptide-1 (GLP-1) is described as a potential early biomarker of this severe condition. Indeed, GLP-1 plasma levels rise rapidly in both mice and humans with intestinal ischemia. This discovery could counter the cruel lack of clinical biomarkers available to diagnose and therefore manage intestinal ischemia efficiently in the early stages. GLP-1 could thus become part of a panel of biomarkers for intestinal ischemia and could help to reduce the associated high mortality rates.


Subject(s)
Glucagon-Like Peptide 1/blood , Intestinal Diseases/blood , Intestinal Diseases/diagnosis , Intestines/blood supply , Ischemia/blood , Ischemia/diagnosis , Animals , Biomarkers/blood , Humans , Intestinal Diseases/mortality , Ischemia/mortality
14.
Cell Rep ; 21(5): 1160-1168, 2017 Oct 31.
Article in English | MEDLINE | ID: mdl-29091756

ABSTRACT

Glucagon-like peptide 1 (GLP-1) is a hormone released from enteroendocrine L cells. Although first described as a glucoregulatory incretin hormone, GLP-1 also suppresses inflammation and promotes mucosal integrity. Here, we demonstrate that plasma GLP-1 levels are rapidly increased by lipopolysaccharide (LPS) administration in mice via a Toll-like receptor 4 (TLR4)-dependent mechanism. Experimental manipulation of gut barrier integrity after dextran sodium sulfate treatment, or via ischemia/reperfusion experiments in mice, triggered a rapid rise in circulating GLP-1. This phenomenon was detected prior to measurable changes in inflammatory status and plasma cytokine and LPS levels. In human subjects, LPS administration also induced GLP-1 secretion. Furthermore, GLP-1 levels were rapidly increased following the induction of ischemia in the human intestine. These findings expand traditional concepts of enteroendocrine L cell biology to encompass the sensing of inflammatory stimuli and compromised mucosal integrity, linking glucagon-like peptide secretion to gut inflammation.


Subject(s)
Glucagon-Like Peptide 1/metabolism , Ileum/drug effects , Lipopolysaccharides/toxicity , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Calcium Signaling/drug effects , Cells, Cultured , Colitis/chemically induced , Colitis/metabolism , Colitis/pathology , Cytokines/blood , Cytokines/genetics , Cytokines/metabolism , Dextran Sulfate/pharmacology , Enteroendocrine Cells/cytology , Enteroendocrine Cells/drug effects , Enteroendocrine Cells/metabolism , Humans , Ileum/metabolism , Interleukin-6/deficiency , Interleukin-6/genetics , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myristic Acids/blood , Proglucagon/metabolism , Proprotein Convertase 1/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Toll-Like Receptor 4/deficiency , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Young Adult
15.
Sci Rep ; 7(1): 3053, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28596518

ABSTRACT

Although plasma phospholipid transfer protein (PLTP) has been mainly studied in the context of atherosclerosis, it shares homology with proteins involved in innate immunity. Here, we produced active recombinant human PLTP (rhPLTP) in the milk of new lines of transgenic rabbits. We successfully used rhPLTP as an exogenous therapeutic protein to treat endotoxemia and sepsis. In mouse models with injections of purified lipopolysaccharides or with polymicrobial infection, we demonstrated that rhPLTP prevented bacterial growth and detoxified LPS. In further support of the antimicrobial effect of PLTP, PLTP-knocked out mice were found to be less able than wild-type mice to fight against sepsis. To our knowledge, the production of rhPLTP to counter infection and to reduce endotoxemia and its harmful consequences is reported here for the first time. This paves the way for a novel strategy to satisfy long-felt, but unmet needs to prevent and treat sepsis.


Subject(s)
Anti-Infective Agents/therapeutic use , Phospholipid Transfer Proteins/therapeutic use , Sepsis/drug therapy , Animals , Anti-Infective Agents/pharmacology , Mice , Mice, Inbred C57BL , Phospholipid Transfer Proteins/pharmacology , Rabbits , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use
16.
Cell Rep ; 7(4): 1116-29, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24794440

ABSTRACT

Adipose tissue fibrosis development blocks adipocyte hypertrophy and favors ectopic lipid accumulation. Here, we show that adipose tissue fibrosis is associated with obesity and insulin resistance in humans and mice. Kinetic studies in C3H mice fed a high-fat diet show activation of macrophages and progression of fibrosis along with adipocyte metabolic dysfunction and death. Adipose tissue fibrosis is attenuated by macrophage depletion. Impairment of Toll-like receptor 4 signaling protects mice from obesity-induced fibrosis. The presence of a functional Toll-like receptor 4 on adipose tissue hematopoietic cells is necessary for the initiation of adipose tissue fibrosis. Continuous low-dose infusion of the Toll-like receptor 4 ligand, lipopolysaccharide, promotes adipose tissue fibrosis. Ex vivo, lipopolysaccharide-mediated induction of fibrosis is prevented by antibodies against the profibrotic factor TGFß1. Together, these results indicate that obesity and endotoxemia favor the development of adipose tissue fibrosis, a condition associated with insulin resistance, through immune cell Toll-like receptor 4.


Subject(s)
Adipose Tissue/pathology , Endotoxemia/metabolism , Obesity/metabolism , Toll-Like Receptor 4/metabolism , Adipocytes/metabolism , Adipocytes/pathology , Adipose Tissue/metabolism , Animals , Diet, High-Fat , Disease Models, Animal , Endotoxemia/pathology , Fibrosis , Humans , Inflammation/metabolism , Inflammation/pathology , Insulin Resistance/physiology , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C3H , Obesity/pathology , Signal Transduction , Toll-Like Receptor 4/genetics
17.
Diabetes ; 63(2): 471-82, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24186868

ABSTRACT

Lipopolysaccharides (LPS) of the cell wall of gram-negative bacteria trigger inflammation, which is associated with marked changes in glucose metabolism. Hyperglycemia is frequently observed during bacterial infection and it is a marker of a poor clinical outcome in critically ill patients. The aim of the current study was to investigate the effect of an acute injection or continuous infusion of LPS on experimentally induced hyperglycemia in wild-type and genetically engineered mice. The acute injection of a single dose of LPS produced an increase in glucose disposal and glucose-stimulated insulin secretion (GSIS). Continuous infusion of LPS through mini-osmotic pumps was also associated with increased GSIS. Finally, manipulation of LPS detoxification by knocking out the plasma phospholipid transfer protein (PLTP) led to increased glucose disposal and GSIS. Overall, glucose tolerance and GSIS tests supported the hypothesis that mice treated with LPS develop glucose-induced hyperinsulinemia. The effects of LPS on glucose metabolism were significantly altered as a result of either the accumulation or antagonism of glucagon-like peptide 1 (GLP-1). Complementary studies in wild-type and GLP-1 receptor knockout mice further implicated the GLP-1 receptor-dependent pathway in mediating the LPS-mediated changes in glucose metabolism. Hence, enhanced GLP-1 secretion and action underlies the development of glucose-mediated hyperinsulinemia associated with endotoxemia.


Subject(s)
Glucagon-Like Peptide 1/metabolism , Glucose/metabolism , Insulin/metabolism , Lipopolysaccharides/toxicity , Receptors, Glucagon/metabolism , Animals , Blood Glucose , Glucagon-Like Peptide 1/genetics , Glucagon-Like Peptide-1 Receptor , Lipopolysaccharides/metabolism , Mice , Mice, Knockout , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/metabolism , Receptors, Glucagon/genetics
18.
Biochimie ; 98: 86-101, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24287293

ABSTRACT

The peroxisomal 3-ketoacyl-CoA thiolase B (ThB) catalyzes the thiolytic cleavage of straight chain 3-ketoacyl-CoAs. Up to now, the ability of ThB to interfere with lipid metabolism was studied in mice fed a laboratory chow enriched or not with the synthetic agonist Wy14,643, a pharmacological activator of the nuclear hormone receptor PPARα. The aim of the present study was therefore to determine whether ThB could play a role in obesity and lipid metabolism when mice are chronically fed a synthetic High Fat Diet (HFD) or a Low Fat Diet (LFD) as a control diet. To investigate this possibility, wild-type (WT) mice and mice deficient for Thb (Thb(-/-)) were subjected to either a synthetic LFD or a HFD for 25 weeks, and their responses were compared. First, when fed a normal regulatory laboratory chow, Thb(-/-) mice displayed growth retardation as well as a severe reduction in the plasma level of Growth Hormone (GH) and Insulin Growth Factor-I (IGF-I), suggesting alterations in the GH/IGF-1 pathway. When fed the synthetic diets, the corrected energy intake to body mass was significantly higher in Thb(-/-) mice, yet those mice were protected from HFD-induced adiposity. Importantly, Thb(-/-) mice also suffered from hypoglycemia, exhibited reduction in liver glycogen stores and circulating insulin levels under the LFD and the HFD. Thb deficiency was also associated with higher levels of plasma HDL (High Density Lipoproteins) cholesterol and increased liver content of cholesterol under both the LFD and the HFD. As shown by the plasma lathosterol to cholesterol ratio, a surrogate marker for cholesterol biosynthesis, whole body cholesterol de novo synthesis was increased in Thb(-/-) mice. By comparing liver RNA from WT mice and Thb(-/-) mice using oligonucleotide microarray and RT-qPCR, a coordinated decrease in the expression of critical cholesterol synthesizing genes and an increased expression of genes involved in bile acid synthesis (Cyp7a1, Cyp17a1, Akr1d1) were observed in Thb(-/-) mice. In parallel, the elevation of the lathosterol to cholesterol ratio as well as the increased expression of cholesterol synthesizing genes were observed in the kidney of Thb(-/-) mice fed the LFD and the HFD. Overall, the data indicate that ThB is not fully interchangeable with the thiolase A isoform. The present study also reveals that modulating the expression of the peroxisomal ThB enzyme can largely reverberate not only throughout fatty acid metabolism but also cholesterol, bile acid and glucose metabolism.


Subject(s)
Acetyl-CoA C-Acyltransferase/deficiency , Animals , Bile Acids and Salts/metabolism , Cholesterol/metabolism , Cholesterol, HDL/blood , Diet, High-Fat , Dietary Fats/administration & dosage , Glucose/metabolism , Growth Hormone/blood , Insulin-Like Growth Factor I/metabolism , Intestine, Small/metabolism , Liver Glycogen/metabolism , Mice
19.
J Lipid Res ; 54(8): 2195-2205, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23620138

ABSTRACT

Cholesteryl ester transfer protein (CETP) activity results in a proatherogenic lipoprotein profile. In cholestatic conditions, farnesoid X receptor (FXR) signaling by bile acids (BA) is activated and plasma HDL cholesterol (HDL-C) levels are low. This study tested the hypothesis that FXR-mediated induction of CETP contributes to this phenotype. Patients with cholestasis and high plasma BA had lower HDL-C levels and higher plasma CETP activity and mass compared with matched controls with low plasma BA (each P < 0.01). BA feeding in APOE3*Leiden transgenic mice expressing the human CETP transgene controlled by its endogenous promoter increased cholesterol within apoB-containing lipoproteins and decreased HDL-C (each P < 0.01), while hepatic CETP mRNA expression and plasma CETP activity and mass increased (each P < 0.01). In vitro studies confirmed that FXR agonists substantially augmented CETP mRNA expression in hepatocytes and macrophages dependent on functional FXR expression (each P < 0.001). These transcriptional effects are likely mediated by an ER8 FXR response element (FXRE) in the first intron. In conclusion, using a translational approach, this study identifies CETP as novel FXR target gene. By increasing CETP expression, FXR activation leads to a proatherogenic lipoprotein profile. These results have clinical relevance, especially when considering FXR agonists as emerging treatment strategy for metabolic disease and atherosclerosis.


Subject(s)
Cholesterol Ester Transfer Proteins/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Up-Regulation , Animals , Cells, Cultured , Cholesterol Ester Transfer Proteins/metabolism , Female , Gene Expression Profiling , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/genetics
20.
Arterioscler Thromb Vasc Biol ; 31(10): 2232-9, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21778422

ABSTRACT

OBJECTIVE: The goal of this study was to determine the impact of the nuclear receptor constitutive androstane receptor (CAR) on lipoprotein metabolism and atherosclerosis in hyperlipidemic mice. METHODS AND RESULTS: Low-density lipoprotein receptor-deficient (Ldlr(-/-)) and apolipoprotein E-deficient (ApoE(-/-)) mice fed a Western-type diet were treated weekly with the Car agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) or the vehicle only for 8 weeks. In Ldlr(-/-) mice, treatment with TCPOBOP induced a decrease in plasma triglyceride and intermediate-density lipoprotein/low-density lipoprotein cholesterol levels (≈30% decrease in both cases after 2 months, P<0.01). These mice also showed a significant reduction in the production of very-low-density lipoproteins associated with a decrease in hepatic triglyceride content and the repression of several genes involved in lipogenesis. TCPOBOP treatment also induced a marked increase in the very-low-density lipoprotein receptor in the liver, which probably contributed to the decrease in intermediate-density lipoprotein/low-density lipoprotein levels. Atherosclerotic lesions in the aortic valves of TCPOBOP-treated Ldlr(-/-) mice were also reduced (-60%, P<0.001). In ApoE(-/-) mice, which lack the physiological apoE ligand for the very-low-density lipoprotein receptor, the effect of TCPOBOP on plasma cholesterol levels and the development of atherosclerotic lesions was markedly attenuated. CONCLUSIONS: CAR is a potential target in the prevention and treatment of hypercholesterolemia and atherosclerosis.


Subject(s)
Apolipoproteins B/blood , Atherosclerosis/prevention & control , Hyperlipidemias/prevention & control , Pyridines/pharmacology , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, LDL/deficiency , Amino Acid Sequence , Animals , Apolipoprotein B-100 , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cholesterol/blood , Cholesterol, LDL/blood , Constitutive Androstane Receptor , Disease Models, Animal , Down-Regulation , Female , Genes, Reporter , HEK293 Cells , Hep G2 Cells , Humans , Hyperlipidemias/genetics , Hyperlipidemias/metabolism , Hyperlipidemias/pathology , Lipogenesis/genetics , Lipoproteins/blood , Lipoproteins, VLDL/blood , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , RNA, Messenger/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, LDL/genetics , Receptors, LDL/metabolism , Response Elements , Time Factors , Transfection , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...