Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 383(6682): 545-551, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38300995

ABSTRACT

Pluripotency, which is defined as a system not fixed as to its developmental potentialities, is typically associated with biology and stem cells. Inspired by this concept, we report synthetic polymers that act as a single "pluripotent" feedstock and can be differentiated into a range of materials that exhibit different mechanical properties, from hard and brittle to soft and extensible. To achieve this, we have exploited dynamic covalent networks that contain labile, dynamic thia-Michael bonds, whose extent of bonding can be thermally modulated and retained through tempering, akin to the process used in metallurgy. In addition, we show that the shape memory behavior of these materials can be tailored through tempering and that these materials can be patterned to spatially control mechanical properties.

2.
J Am Chem Soc ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37018716

ABSTRACT

Two-dimensional (2D) inorganic materials have emerged as exciting platforms for (opto)electronic, thermoelectric, magnetic, and energy storage applications. However, electronic redox tuning of these materials can be difficult. Instead, 2D metal-organic frameworks (MOFs) offer the possibility of electronic tuning through stoichiometric redox changes, with several examples featuring one to two redox events per formula unit. Here, we demonstrate that this principle can be extended over a far greater span with the isolation of four discrete redox states in the 2D MOFs LixFe3(THT)2 (x = 0-3, THT = triphenylenehexathiol). This redox modulation results in 10,000-fold greater conductivity, p- to n-type carrier switching, and modulation of antiferromagnetic coupling. Physical characterization suggests that changes in carrier density drive these trends with relatively constant charge transport activation energies and mobilities. This series illustrates that 2D MOFs are uniquely redox flexible, making them an ideal materials platform for tunable and switchable applications.

3.
Nature ; 611(7936): 479-484, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36289346

ABSTRACT

Conducting organic materials, such as doped organic polymers1, molecular conductors2,3 and emerging coordination polymers4, underpin technologies ranging from displays to flexible electronics5. Realizing high electrical conductivity in traditionally insulating organic materials necessitates tuning their electronic structure through chemical doping6. Furthermore, even organic materials that are intrinsically conductive, such as single-component molecular conductors7,8, require crystallinity for metallic behaviour. However, conducting polymers are often amorphous to aid durability and processability9. Using molecular design to produce high conductivity in undoped amorphous materials would enable tunable and robust conductivity in many applications10, but there are no intrinsically conducting organic materials that maintain high conductivity when disordered. Here we report an amorphous coordination polymer, Ni tetrathiafulvalene tetrathiolate, which displays markedly high electronic conductivity (up to 1,200 S cm-1) and intrinsic glassy-metallic behaviour. Theory shows that these properties are enabled by molecular overlap that is robust to structural perturbations. This unusual set of features results in high conductivity that is stable to humid air for weeks, pH 0-14 and temperatures up to 140 °C. These findings demonstrate that molecular design can enable metallic conductivity even in heavily disordered materials, raising fundamental questions about how metallic transport can exist without periodic structure and indicating exciting new applications for these materials.

4.
Angew Chem Int Ed Engl ; 61(45): e202207834, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36070987

ABSTRACT

The emergence of conductive 2D and less commonly 3D coordination polymers (CPs) and metal-organic frameworks (MOFs) promises novel applications in many fields. However, the synthetic parameters for these electronically complex materials are not thoroughly understood. Here we report a new 3D semiconducting CP Fe5 (C6 O6 )3 , which is a fusion of 2D Fe-semiquinoid materials and 3D cubic Fex (C6 O6 )y materials, by using a different initial redox-state of the C6 O6 linker. The material displays high electrical conductivity (0.02 S cm-1 ), broad electronic transitions, promising thermoelectric behavior (S2 σ=7.0×10-9  W m-1 K-2 ), and strong antiferromagnetic interactions at room temperature. This material illustrates how controlling the oxidation states of redox-active components in conducting CPs/MOFs can be a "pre-synthetic" strategy to carefully tune material topologies and properties in contrast to more commonly encountered post-synthetic modifications.

5.
ACS Polym Au ; 2(4): 275-286, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36855565

ABSTRACT

Polymeric mixed ionic-electronic conductors (MIECs) are of broad interest in the field of energy storage and conversion, optoelectronics, and bioelectronics. A class of polymeric MIECs are conjugated polyelectrolytes (CPEs), which possess a π-conjugated backbone imparting electronic transport characteristics along with side chains composed of a pendant ionic group to allow for ionic transport. Here, our study focuses on the humidity-dependent structure-transport properties of poly[3-(potassium-n-alkanoate) thiophene-2,5-diyl] (P3KnT) CPEs with varied side-chain lengths of n = 4-7. UV-vis spectroscopy along with electronic paramagnetic resonance (EPR) spectroscopy reveals that the infiltration of water leads to a hydrated, self-doped state that allows for electronic transport. The resulting humidity-dependent ionic conductivity (σi) of the thin films shows a monotonic increase with relative humidity (RH) while electronic conductivity (σe) follows a non-monotonic profile. The values of σe continue to rise with increasing RH reaching a local maximum after which σe begins to decrease. P3KnTs with higher n values demonstrate greater resiliency to increasing RH before suffering a decrease in σe. This drop in σe is attributed to two factors. First, disruption of the locally ordered π-stacked domains observed through in situ humidity-dependent grazing incidence wide-angle X-ray scattering (GIWAXS) experiments can account for some of the decrease in σe. A second and more dominant factor is attributed to the swelling of the amorphous domains where electronic transport pathways connecting ordered domains are impeded. P3K7T is most resilient to swelling (based on ellipsometry and water uptake measurements) where sufficient hydration allows for high σi (1.0 × 10-1 S/cm at 95% RH) while not substantially disrupting σe (1.7 × 10-2 S/cm at 85% RH and 8.0 × 10-3 S/cm at 95% RH). Overall, our study highlights the complexity of balancing electronic and ionic transport in hydrated CPEs.

6.
ACS Macro Lett ; 10(12): 1637-1642, 2021 12 21.
Article in English | MEDLINE | ID: mdl-35549126

ABSTRACT

Cross-linking poly(glycidyl methacrylate) microparticles with redox-responsive bis(5-amino-l,3,4-thiadiazol-2-yl) disulfide moieties yield redox-active particles (RAPs) capable of electrochemical energy storage via a reversible 2-electron reduction of the disulfide bond. The resulting RAPs show improved electrochemical reversibility compared to a small-molecule disulfide analogue in solution, attributed to spatial confinement of the polymer-grafted disulfides in the particle. Galvanostatic cycling was used to investigate the impact of electrolyte selection on stability and specific capacity. A dimethyl sulfoxide/magnesium triflate electrolyte was ultimately selected for its favorable electrochemical reversibility and specific capacity. Additionally, the specific capacity showed a strong dependence on particle size where smaller particles yielded higher specific capacity. Overall, these experiments offer a promising direction in designing synthetically facile and electrochemically stable materials for organosulfur-based multielectron energy storage coupled with beyond Li ion systems such as Mg.


Subject(s)
Disulfides , Polymers , Disulfides/chemistry , Drug Liberation , Oxidation-Reduction , Particle Size
7.
ACS Macro Lett ; 9(4): 500-506, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-35648505

ABSTRACT

Cross-linked polymer electrolytes containing structurally dynamic disulfide bonds have been synthesized to investigate their combined ion transport and adhesive properties. Dynamic network polymers of varying cross-link densities are synthesized via thiol oxidation of a bisthiol monomer, 2,2'-(ethylenedioxy)diethanethiol, and tetrathiol cross-linker, pentaerythritol tetrakis(3-mercaptopropionate). At optimal loading of lithium bis(trifluoromethane-sulfonyl-imide) (LiTFSI) salt, the ionic conductivities (σ) at 90 °C are about 1 × 10-4 and 1 × 10-5 S/cm at the lowest and highest cross-linking, respectively. Notably, in comparison to the equivalent nondynamic network, the dynamic network shows a positive deviation in σ above 90 °C, which suggests the enhancement of ion transport occurs from the difference in structural relaxation on account of the dissociation of disulfide bonds. Lap shear adhesion and conductivity tests on ITO-coated glass substrates reveal the dynamic network exhibits a higher adhesive shear strength of 0.2 MPa (vs 0.03 MPa for the nondynamic network) and higher σ after the application of external stimulus (UV light or heat). The adhesive strength and σ are stable over multiple debonding/rebonding cycles and, thus, demonstrating the utility of these structurally dynamic networks as solid polymer electrolyte adhesives.

SELECTION OF CITATIONS
SEARCH DETAIL
...