Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0301394, 2024.
Article in English | MEDLINE | ID: mdl-38557685

ABSTRACT

Engineering systems, characterized by their high technical complexity and societal intricacies, require a strategic design approach to navigate multifaceted challenges. Understanding the circumstances that affect strategic action in these systems is crucial for managing complex real-world challenges. These challenges go beyond localized coordination issues and encompass intricate dynamics, requiring a deep understanding of the underlying structures impacting strategic behaviors, the interactions between subsystems, and the conflicting needs and expectations of diverse actors. Traditional optimization and game-theoretic approaches to guide individual and collective decisions need adaptation to capture the complexities of these design ecosystems, particularly in the face of increasing numbers of decision-makers and various interconnections between them. This paper presents a framework for studying strategic decision-making processes in collective systems. It tackles the combinatorial complexity and interdependencies inherent in large-scale systems by representing strategic decision-making processes as binary normal-form games, then dissects and reinterprets them in terms of multiple compact games characterized by two real-numbered structural factors and classifies them across four strategy dynamical domains associated with different stability conditions. We provide a mathematical characterization and visual representation of emergent strategy dynamics in games with three or more actors intended to facilitate its implementation by researchers and practitioners and elicit new perspectives on design and management for optimizing systems-of-systems performance. We conclude this paper with a discussion of the opportunities and challenges of adopting this framework within and beyond the context of engineering systems.

2.
Lancet Reg Health West Pac ; 43: 100987, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38456088

ABSTRACT

Background: Long-term projections of premature mortality (defined as deaths age <75 years) help to inform decisions about public health priorities. This study aimed to project premature mortality rates in Australia to 2044, and to estimate numbers of deaths and potential years of life lost (PYLL) due to premature mortality overall and for 59 causes. Methods: We examined the past trends in premature mortality rates using Australian mortality data by sex, 5-year age group and 5-year calendar period up to 2019. Cigarette smoking exposure data (1945-2019) were included to project lung cancer mortality. Age-period-cohort or generalised linear models were developed and validated for each cause to project premature mortality rates to 2044. Findings: Over the 25-year period from 1990-1994 to 2015-2019, there was a 44.4% decrease in the overall age-standardised premature mortality rate. This decline is expected to continue, from 162.4 deaths/100,000 population in 2015-2019 to 141.7/100,000 in 2040-2044 (12.7% decrease). Despite declining rates, total numbers of premature deaths are projected to increase by 22.8%, rising from 272,815 deaths in 2015-2019 to 334,894 deaths in 2040-2044. This is expected to result in 1.58 million premature deaths over the 25-year period 2020-2044, accounting for 24.5 million PYLL. Of the high-level cause categories, cancer is projected to remain the most common cause of premature death in Australia by 2044, followed by cardiovascular disease, external causes (including injury, poisoning, and suicide), and respiratory diseases. Interpretation: Despite continuously declining overall premature mortality rates, the total number of premature deaths in Australia is projected to remain substantial, and cancer will continue to be the leading cause. These projections can inform the targeting of public health efforts and can serve as benchmarks against which to measure the impact of future interventions. They emphasise the ongoing importance of accelerating the prevention, early detection, and treatment of key health conditions. Funding: No funding was provided for this study.

3.
Sci Data ; 11(1): 305, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509110

ABSTRACT

Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m-2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic.


Subject(s)
Ecosystem , Plants , Trees , Arctic Regions , Biomass
SELECTION OF CITATIONS
SEARCH DETAIL