Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Am J Hum Genet ; 111(2): 242-258, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38211585

ABSTRACT

Tumor mutational burden (TMB), the total number of somatic mutations in the tumor, and copy number burden (CNB), the corresponding measure of aneuploidy, are established fundamental somatic features and emerging biomarkers for immunotherapy. However, the genetic and non-genetic influences on TMB/CNB and, critically, the manner by which they influence patient outcomes remain poorly understood. Here, we present a large germline-somatic study of TMB/CNB with >23,000 individuals across 17 cancer types, of which 12,000 also have extensive clinical, treatment, and overall survival (OS) measurements available. We report dozens of clinical associations with TMB/CNB, observing older age and male sex to have a strong effect on TMB and weaker impact on CNB. We additionally identified significant germline influences on TMB/CNB, including fine-scale European ancestry and germline polygenic risk scores (PRSs) for smoking, tanning, white blood cell counts, and educational attainment. We quantify the causal effect of exposures on somatic mutational processes using Mendelian randomization. Many of the identified features associated with TMB/CNB were additionally associated with OS for individuals treated at a single tertiary cancer center. For individuals receiving immunotherapy, we observed a complex relationship between PRSs for educational attainment, self-reported college attainment, TMB, and survival, suggesting that the influence of this biomarker may be substantially modified by socioeconomic status. While the accumulation of somatic alterations is a stochastic process, our work demonstrates that it can be shaped by host characteristics including germline genetics.


Subject(s)
Neoplasms , Humans , Male , Mutation/genetics , Neoplasms/genetics , Neoplasms/pathology , Immunotherapy , Biomarkers, Tumor/genetics , Germ Cells/pathology
2.
Cancer Epidemiol Biomarkers Prev ; 32(3): 344-352, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36626408

ABSTRACT

BACKGROUND: Oncologists often order genomic testing to inform treatment for worsening cancer. The resulting correlation between genomic testing timing and prognosis, or "informative entry," can bias observational clinico-genomic research. The efficacy of existing approaches to this problem in clinico-genomic cohorts is poorly understood. METHODS: We simulated clinico-genomic cohorts followed from an index date to death. Subgroups in each cohort who underwent genomic testing before death were "observed." We varied data generation parameters under four scenarios: (i) independent testing and survival times; (ii) correlated testing and survival times for all patients; (iii) correlated testing and survival times for a subset of patients; and (iv) testing and mortality exclusively following progression events. We examined the behavior of conditional Kendall tau (Tc) statistics, Cox entry time coefficients, and biases in overall survival (OS) estimation and biomarker inference across scenarios. RESULTS: Scenario #1 yielded null Tc and Cox entry time coefficients and unbiased OS inference. Scenario #2 yielded positive Tc, negative Cox entry time coefficients, underestimated OS, and biomarker associations biased toward the null. Scenario #3 yielded negative Tc, positive Cox entry time coefficients, and underestimated OS, but biomarker estimates were less biased. Scenario #4 yielded null Tc and Cox entry time coefficients, underestimated OS, and biased biomarker estimates. Transformation and copula modeling did not provide unbiased results. CONCLUSIONS: Approaches to informative clinico-genomic cohort entry, including Tc and Cox entry time statistics, are sensitive to heterogeneity in genotyping and survival time distributions. IMPACT: Novel methods are needed for unbiased inference using observational clinico-genomic data.


Subject(s)
Neoplasms , Humans , Bias , Causality , Genomics
3.
Nat Med ; 28(12): 2584-2591, 2022 12.
Article in English | MEDLINE | ID: mdl-36526723

ABSTRACT

Immune checkpoint inhibitors (ICIs) have yielded remarkable responses but often lead to immune-related adverse events (irAEs). Although germline causes for irAEs have been hypothesized, no individual variant associated with developing irAEs has been identified. We carried out a genome-wide association study of 1,751 patients on ICIs across 12 cancer types. We investigated two irAE phenotypes: (1) high-grade (3-5) and (2) all-grade events. We identified 3 genome-wide significant associations (P < 5 × 10-8) in the discovery cohort associated with all-grade irAEs: rs16906115 near IL7 (combined P = 3.6 × 10-11; hazard ratio (HR) = 2.1); rs75824728 near IL22RA1 (combined P = 3.5 × 10-8; HR = 1.8); and rs113861051 on 4p15 (combined P = 1.2 × 10-8, HR = 2.0); rs16906115 was replicated in 3 independent studies. The association near IL7 colocalized with the gain of a new cryptic exon for IL7, a critical regulator of lymphocyte homeostasis. Patients carrying the IL7 germline variant exhibited significantly increased lymphocyte stability after ICI initiation, which was itself predictive of downstream irAEs and improved survival.


Subject(s)
Genome-Wide Association Study , Immune Checkpoint Inhibitors , Interleukin-7 , Cognition , Germ Cells , Retrospective Studies
4.
Nat Med ; 28(12): 2592-2600, 2022 12.
Article in English | MEDLINE | ID: mdl-36526722

ABSTRACT

Treatment with immune checkpoint blockade (ICB) frequently triggers immune-related adverse events (irAEs), causing considerable morbidity. In 214 patients receiving ICB for melanoma, we observed increased severe irAE risk in minor allele carriers of rs16906115, intronic to IL7. We found that rs16906115 forms a B cell-specific expression quantitative trait locus (eQTL) to IL7 in patients. Patients carrying the risk allele demonstrate increased pre-treatment B cell IL7 expression, which independently associates with irAE risk, divergent immunoglobulin expression and more B cell receptor mutations. Consistent with the role of IL-7 in T cell development, risk allele carriers have distinct ICB-induced CD8+ T cell subset responses, skewing of T cell clonality and greater proportional repertoire occupancy by large clones. Finally, analysis of TCGA data suggests that risk allele carriers independently have improved melanoma survival. These observations highlight key roles for B cells and IL-7 in both ICB response and toxicity and clinical outcomes in melanoma.


Subject(s)
Interleukin-7 , Melanoma , Humans , Interleukin-7/genetics , Interleukin-7/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Melanoma/drug therapy , Melanoma/genetics , CD8-Positive T-Lymphocytes , Genetic Variation
5.
Nat Genet ; 54(9): 1364-1375, 2022 09.
Article in English | MEDLINE | ID: mdl-36071171

ABSTRACT

Many genetic variants affect disease risk by altering context-dependent gene regulation. Such variants are difficult to study mechanistically using current methods that link genetic variation to steady-state gene expression levels, such as expression quantitative trait loci (eQTLs). To address this challenge, we developed the cistrome-wide association study (CWAS), a framework for identifying genotypic and allele-specific effects on chromatin that are also associated with disease. In prostate cancer, CWAS identified regulatory elements and androgen receptor-binding sites that explained the association at 52 of 98 known prostate cancer risk loci and discovered 17 additional risk loci. CWAS implicated key developmental transcription factors in prostate cancer risk that are overlooked by eQTL-based approaches due to context-dependent gene regulation. We experimentally validated associations and demonstrated the extensibility of CWAS to additional epigenomic datasets and phenotypes, including response to prostate cancer treatment. CWAS is a powerful and biologically interpretable paradigm for studying variants that influence traits by affecting transcriptional regulation.


Subject(s)
Chromatin , Prostatic Neoplasms , Chromatin/genetics , Gene Expression Regulation , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Polymorphism, Single Nucleotide/genetics , Prostatic Neoplasms/genetics , Quantitative Trait Loci/genetics
6.
Cancer Cell ; 40(10): 1161-1172.e5, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36179682

ABSTRACT

The immune checkpoint inhibitor (ICI) pembrolizumab is US FDA approved for treatment of solid tumors with high tumor mutational burden (TMB-high; ≥10 variants/Mb). However, the extent to which TMB-high generalizes as an accurate biomarker in diverse patient populations is largely unknown. Using two clinical cohorts, we investigated the interplay between genetic ancestry, TMB, and tumor-only versus tumor-normal paired sequencing in solid tumors. TMB estimates from tumor-only panels substantially overclassified individuals into the clinically important TMB-high group due to germline contamination, and this bias was particularly pronounced in patients with Asian/African ancestry. Among patients with non-small cell lung cancer treated with ICIs, those misclassified as TMB-high from tumor-only panels did not associate with improved outcomes. TMB-high was significantly associated with improved outcomes only in European ancestries and merits validation in non-European ancestry populations. Ancestry-aware tumor-only TMB calibration and ancestry-diverse biomarker studies are critical to ensure that existing disparities are not exacerbated in precision medicine.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/genetics , Mutation , Tumor Burden
7.
Genome Med ; 14(1): 39, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35428358

ABSTRACT

BACKGROUND: Genomic alterations in 8 genes are now the targets of FDA-approved therapeutics in non-small cell lung cancer (NSCLC), but their distribution according to genetic ancestry, sex, histology, and smoking is not well established. METHODS: Using multi-institutional genetic testing data from GENIE, we characterize the distribution of targetable genomic alterations in 8 genes among 8675 patients with NSCLC (discovery cohort: DFCI, N = 3115; validation cohort: Duke, Memorial Sloan Kettering Cancer Center, Vanderbilt, N = 5560). For the discovery cohort, we impute genetic ancestry from tumor-only sequencing and identify differences in the frequency of targetable alterations across ancestral groups, smoking pack-years, and histologic subtypes. RESULTS: We identified variation in the prevalence of KRASG12C, sensitizing EGFR mutations, MET alterations, ALK, and ROS1 fusions according to the number of smoking pack-years. A novel method for computing continental (African, Asian, European) and Ashkenazi Jewish ancestries from panel sequencing enables quantitative analysis of the correlation between ancestry and mutation rates. This analysis identifies a correlation between Asian ancestry and EGFR mutations and an anti-correlation between Asian ancestry and KRASG12C mutation. It uncovers 2.7-fold enrichment for MET exon 14 skipping mutations and amplifications in patients of Ashkenazi Jewish ancestry. Among never/light smokers, targetable alterations in LUAD are significantly enriched in those with Asian (80%) versus African (49%) and European (55%) ancestry. Finally, we show that 5% of patients with squamous cell carcinoma (LUSC) and 17% of patients with large cell carcinoma (LCLC) harbor targetable alterations. CONCLUSIONS: Among patients with NSCLC, there was significant variability in the prevalence of targetable genomic alterations according to genetic ancestry, histology, and smoking. Patients with LUSC and LCLC have 5% rates of targetable alterations supporting consideration for sequencing in those subtypes.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Smoking/genetics
8.
Lancet Oncol ; 23(1): 172-184, 2022 01.
Article in English | MEDLINE | ID: mdl-34895481

ABSTRACT

BACKGROUND: Predictive biomarkers could allow more precise use of immune checkpoint inhibitors (ICIs) in treating advanced cancers. Given the central role of HLA molecules in immunity, variation at the HLA loci could differentially affect the response to ICIs. The aim of this epidemiological study was to determine the effect of HLA-A*03 as a biomarker for predicting response to immunotherapy. METHODS: In this epidemiological study, we investigated the clinical outcomes (overall survival, progression free survival, and objective response rate) after treatment for advanced cancer in eight cohorts of patients: three observational cohorts of patients with various types of advanced tumours (the Memorial Sloan Kettering Integrated Mutation Profiling of Actionable Cancer Targets [MSK-IMPACT] cohort, the Dana-Farber Cancer Institute [DFCI] Profile cohort, and The Cancer Genome Atlas) and five clinical trials of patients with advanced bladder cancer (JAVELIN Solid Tumour) or renal cell carcinoma (CheckMate-009, CheckMate-010, CheckMate-025, and JAVELIN Renal 101). In total, these cohorts included 3335 patients treated with various ICI agents (anti-PD-1, anti-PD-L1, and anti-CTLA-4 inhibitors) and 10 917 patients treated with non-ICI cancer-directed therapeutic approaches. We initially modelled the association of HLA amino-acid variation with overall survival in the MSK-IMPACT discovery cohort, followed by a detailed analysis of the association between HLA-A*03 and clinical outcomes in MSK-IMPACT, with replication in the additional cohorts (two further observational cohorts and five clinical trials). FINDINGS: HLA-A*03 was associated in an additive manner with reduced overall survival after ICI treatment in the MSK-IMPACT cohort (HR 1·48 per HLA-A*03 allele [95% CI 1·20-1·82], p=0·00022), the validation DFCI Profile cohort (HR 1·22 per HLA-A*03 allele, 1·05-1·42; p=0·0097), and in the JAVELIN Solid Tumour clinical trial for bladder cancer (HR 1·36 per HLA-A*03 allele, 1·01-1·85; p=0·047). The HLA-A*03 effect was observed across ICI agents and tumour types, but not in patients treated with alternative therapies. Patients with HLA-A*03 had shorter progression-free survival in the pooled patient population from the three CheckMate clinical trials of nivolumab for renal cell carcinoma (HR 1·31, 1·01-1·71; p=0·044), but not in those receiving control (everolimus) therapies. Objective responses were observed in none of eight HLA-A*03 homozygotes in the ICI group (compared with 59 [26·6%] of 222 HLA-A*03 non-carriers and 13 (17·1%) of 76 HLA-A*03 heterozygotes). HLA-A*03 was associated with shorter progression-free survival in patients receiving ICI in the JAVELIN Renal 101 randomised clinical trial for renal cell carcinoma (avelumab plus axitinib; HR 1·59 per HLA-A*03 allele, 1·16-2·16; p=0·0036), but not in those receiving control (sunitinib) therapy. Objective responses were recorded in one (12·5%) of eight HLA-A*03 homozygotes in the ICI group (compared with 162 [63·8%] of 254 HLA-A*03 non-carriers and 40 [55·6%] of 72 HLA-A*03 heterozygotes). HLA-A*03 was associated with impaired outcome in meta-analysis of all 3335 patients treated with ICI at genome-wide significance (p=2·01 × 10-8) with no evidence of heterogeneity in effect (I2 0%, 95% CI 0-0·76) INTERPRETATION: HLA-A*03 is a predictive biomarker of poor response to ICI. Further evaluation of HLA-A*03 is warranted in randomised trials. HLA-A*03 carriage could be considered in decisions to initiate ICI in patients with cancer. FUNDING: National Institutes of Health, Merck KGaA, and Pfizer.


Subject(s)
HLA-A3 Antigen/genetics , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , Alleles , Biomarkers , Epidemiologic Studies , Humans , Neoplasms/immunology , Neoplasms/mortality
9.
Genome Med ; 13(1): 179, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34749793

ABSTRACT

BACKGROUND: Hundreds of thousands of cancer patients have had targeted (panel) tumor sequencing to identify clinically meaningful mutations. In addition to improving patient outcomes, this activity has led to significant discoveries in basic and translational domains. However, the targeted nature of clinical tumor sequencing has a limited scope, especially for germline genetics. In this work, we assess the utility of discarded, off-target reads from tumor-only panel sequencing for the recovery of genome-wide germline genotypes through imputation. METHODS: We developed a framework for inference of germline variants from tumor panel sequencing, including imputation, quality control, inference of genetic ancestry, germline polygenic risk scores, and HLA alleles. We benchmarked our framework on 833 individuals with tumor sequencing and matched germline SNP array data. We then applied our approach to a prospectively collected panel sequencing cohort of 25,889 tumors. RESULTS: We demonstrate high to moderate accuracy of each inferred feature relative to direct germline SNP array genotyping: individual common variants were imputed with a mean accuracy (correlation) of 0.86, genetic ancestry was inferred with a correlation of > 0.98, polygenic risk scores were inferred with a correlation of > 0.90, and individual HLA alleles were inferred with a correlation of > 0.80. We demonstrate a minimal influence on the accuracy of somatic copy number alterations and other tumor features. We showcase the feasibility and utility of our framework by analyzing 25,889 tumors and identifying the relationships between genetic ancestry, polygenic risk, and tumor characteristics that could not be studied with conventional on-target tumor data. CONCLUSIONS: We conclude that targeted tumor sequencing can be leveraged to build rich germline research cohorts from existing data and make our analysis pipeline publicly available to facilitate this effort.


Subject(s)
Genetic Predisposition to Disease/genetics , Germ Cells , Neoplasms/genetics , Sequence Analysis, DNA , Alleles , Computational Biology , DNA Copy Number Variations , Gene Frequency , Genome-Wide Association Study , Genotype , Genotyping Techniques , High-Throughput Nucleotide Sequencing , Humans , Mutation , Polymorphism, Single Nucleotide
10.
Clin Cancer Res ; 27(18): 5131-5140, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34244291

ABSTRACT

PURPOSE: Genetic differences in immunity may contribute to toxicity and outcomes with immune checkpoint inhibitor (CPI) therapy, but these relationships are poorly understood. We examined the genetics of thyroid immune-related adverse events (irAE). EXPERIMENTAL DESIGN: In patients with non-small cell lung cancer (NSCLC) treated with CPIs at Memorial Sloan Kettering (MSK) and Vanderbilt University Medical Center (VUMC), we evaluated thyroid irAEs. We typed germline DNA using genome-wide single-nucleotide polymorphism (SNP) arrays and imputed genotypes. Germline SNP imputation was also performed in an independent Dana-Farber Cancer Institute (DFCI) cohort. We developed and validated polygenic risk scores (PRS) for hypothyroidism in noncancer patients using the UK and VUMC BioVU biobanks. These PRSs were applied to thyroid irAEs and CPI response in patients with NSCLC at MSK, VUMC, and DFCI. RESULTS: Among 744 patients at MSK and VUMC, thyroid irAEs occurred in 13% and were associated with improved outcomes [progression-free survival adjusted HR (PFS aHR) = 0.68; 95% confidence interval (CI), 0.52-0.88]. The PRS for hypothyroidism developed from UK Biobank predicted hypothyroidism in the BioVU dataset in noncancer patients [OR per standard deviation (SD) = 1.33, 95% CI, 1.29-1.37; AUROC = 0.6]. The same PRS also predicted development of thyroid irAEs in both independent cohorts of patients treated with CPIs (HR per SD = 1.34; 95% CI, 1.08-1.66; AUROC = 0.6). The results were similar in the DFCI cohort. However, PRS for hypothyroidism did not predict CPI benefit. CONCLUSIONS: Thyroid irAEs were associated with response to anti-PD-1 therapy. Genetic risk for hypothyroidism was associated with risk of developing thyroid irAEs. Additional studies are needed to determine whether other irAEs also have shared genetic risk with known autoimmune disorders and the association with treatment response.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/adverse effects , Lung Neoplasms/drug therapy , Thyroid Diseases/chemically induced , Thyroid Diseases/genetics , Aged , Female , Humans , Male , Middle Aged , Retrospective Studies , Risk Assessment , Treatment Outcome
11.
JCO Clin Cancer Inform ; 5: 622-630, 2021 06.
Article in English | MEDLINE | ID: mdl-34097438

ABSTRACT

PURPOSE: To inform precision oncology, methods are needed to use electronic health records (EHRs) to identify patients with cancer who are experiencing clinical inflection points, consistent with worsening prognosis or a high propensity to change treatment, at specific time points. Such patients might benefit from real-time screening for clinical trials. METHODS: Using serial unstructured imaging reports for patients with solid tumors or lymphoma participating in a single-institution precision medicine study, we trained a deep neural network natural language processing (NLP) model to dynamically predict patients' prognoses and propensity to start new palliative-intent systemic therapy within 30 days. Model performance was evaluated using Harrell's c-index (for prognosis) and the area under the receiver operating characteristic curve (AUC; for new treatment and new clinical trial enrollment). Associations between model outputs and manual annotations of cancer progression were also evaluated using the AUC. RESULTS: A deep NLP model was trained and evaluated using 302,688 imaging reports for 16,780 patients. In a held-out test set of 34,770 reports for 1,952 additional patients, the model predicted survival with a c-index of 0.76 and initiation of new treatment with an AUC of 0.77. Model-generated prognostic scores were associated with annotation of cancer progression on the basis of manual EHR review (n = 1,488 reports for 110 patients with lung or colorectal cancer) with an AUC of 0.78, and predictions of new treatment were associated with annotation of cancer progression on the basis of manual EHR review with an AUC of 0.84. CONCLUSION: Training a deep NLP model to identify clinical inflection points among patients with cancer is feasible. This approach could identify patients who may benefit from real-time targeted clinical trial screening interventions at health system scale.


Subject(s)
Neoplasms , Electronic Health Records , Humans , Natural Language Processing , Neoplasms/diagnosis , Neoplasms/therapy , Precision Medicine , Prognosis
12.
Cell Rep ; 34(13): 108926, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33789101

ABSTRACT

Prior studies of the renal cell carcinoma (RCC) germline landscape investigated predominantly patients of European ancestry. We examine the frequency of germline pathogenic and likely pathogenic (P/LP) variants in 1,829 patients with RCC from various ancestries. Overall, P/LP variants are found in 17% of patients, among whom 10.3% harbor one or more clinically actionable variants with potential preventive or therapeutic utility. Patients of African ancestry with RCC harbor significantly more P/LP variants in FH compared to patients of non-African ancestry with RCC and African controls from the Genome Aggregation Database (gnomAD). Patients of non-African ancestry have significantly more P/LP variants in CHEK2 compared to patients of African ancestry with RCC and non-Finnish Europeans controls. Non-Africans with RCC have more actionable variants compared to Africans with RCC. This work helps understand the underlying biological differences in RCC between Africans and non-Africans and paves the way to more comprehensive genomic characterization of underrepresented populations.


Subject(s)
Carcinoma, Renal Cell/genetics , Ethnicity/genetics , Germ-Line Mutation/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Checkpoint Kinase 2/genetics , Child , Child, Preschool , Female , Genealogy and Heraldry , Genes, Neoplasm , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Kidney Neoplasms/genetics , Male , Middle Aged , Penetrance , Young Adult
13.
Phys Rev Lett ; 115(18): 180601, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26565450

ABSTRACT

We study the effects of integrability-breaking perturbations on the nonequilibrium evolution of many-particle quantum systems. We focus on a class of spinless fermion models with weak interactions. We employ equation of motion techniques that can be viewed as generalizations of quantum Boltzmann equations. We benchmark our method against time-dependent density matrix renormalization group computations and find it to be very accurate as long as interactions are weak. For small integrability breaking, we observe robust prethermalization plateaux for local observables on all accessible time scales. Increasing the strength of the integrability-breaking term induces a "drift" away from the prethermalization plateaux towards thermal behavior. We identify a time scale characterizing this crossover.

SELECTION OF CITATIONS
SEARCH DETAIL
...