Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 4312, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463913

ABSTRACT

Severe forms of dilated cardiomyopathy (DCM) are associated with point mutations in the alternative splicing regulator RBM20 that are frequently located in the arginine/serine-rich domain (RS-domain). Such mutations can cause defective splicing and cytoplasmic mislocalization, which leads to the formation of detrimental cytoplasmic granules. Successful development of personalized therapies requires identifying the direct mechanisms of pathogenic RBM20 variants. Here, we decipher the molecular mechanism of RBM20 mislocalization and its specific role in DCM pathogenesis. We demonstrate that mislocalized RBM20 RS-domain variants retain their splice regulatory activity, which reveals that aberrant cellular localization is the main driver of their pathological phenotype. A genome-wide CRISPR knockout screen combined with image-enabled cell sorting identified Transportin-3 (TNPO3) as the main nuclear importer of RBM20. We show that the direct RBM20-TNPO3 interaction involves the RS-domain, and is disrupted by pathogenic variants. Relocalization of pathogenic RBM20 variants to the nucleus restores alternative splicing and dissolves cytoplasmic granules in cell culture and animal models. These findings provide proof-of-principle for developing therapeutic strategies to restore RBM20's nuclear localization in RBM20-DCM patients.


Subject(s)
Cardiomyopathy, Dilated , Animals , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , RNA Splicing/genetics , Alternative Splicing/genetics , Mutation , Karyopherins/genetics
2.
Nat Commun ; 14(1): 3714, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37349314

ABSTRACT

Dilated cardiomyopathy is the second most common cause for heart failure with no cure except a high-risk heart transplantation. Approximately 30% of patients harbor heritable mutations which are amenable to CRISPR-based gene therapy. However, challenges related to delivery of the editing complex and off-target concerns hamper the broad applicability of CRISPR agents in the heart. We employ a combination of the viral vector AAVMYO with superior targeting specificity of heart muscle tissue and CRISPR base editors to repair patient mutations in the cardiac splice factor Rbm20, which cause aggressive dilated cardiomyopathy. Using optimized conditions, we repair >70% of cardiomyocytes in two Rbm20 knock-in mouse models that we have generated to serve as an in vivo platform of our editing strategy. Treatment of juvenile mice restores the localization defect of RBM20 in 75% of cells and splicing of RBM20 targets including TTN. Three months after injection, cardiac dilation and ejection fraction reach wild-type levels. Single-nuclei RNA sequencing uncovers restoration of the transcriptional profile across all major cardiac cell types and whole-genome sequencing reveals no evidence for aberrant off-target editing. Our study highlights the potential of base editors combined with AAVMYO to achieve gene repair for treatment of hereditary cardiac diseases.


Subject(s)
Cardiomyopathy, Dilated , Mice , Animals , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/therapy , Cardiomyopathy, Dilated/metabolism , Gene Editing , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Myocardium/metabolism , Mutation , Myocytes, Cardiac/metabolism
3.
Nat Rev Cardiol ; 20(8): 517-530, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36653465

ABSTRACT

Despite advances in therapeutics for heart failure and arrhythmias, a substantial proportion of patients with cardiomyopathy do not respond to interventions, indicating a need to identify novel modifiable myocardial pathobiology. Human genetic variation associated with severe forms of cardiomyopathy and arrhythmias has highlighted the crucial role of alternative splicing in myocardial health and disease, given that it determines which mature RNA transcripts drive the mechanical, structural, signalling and metabolic properties of the heart. In this Review, we discuss how the analysis of cardiac isoform expression has been facilitated by technical advances in multiomics and long-read and single-cell sequencing technologies. The resulting insights into the regulation of alternative splicing - including the identification of cardiac splice regulators as therapeutic targets and the development of a translational pipeline to evaluate splice modulators in human engineered heart tissue, animal models and clinical trials - provide a basis for improved diagnosis and therapy. Finally, we consider how the medical and scientific communities can benefit from facilitated acquisition and interpretation of splicing data towards improved clinical decision-making and patient care.


Subject(s)
Cardiomyopathies , Heart Failure , Animals , Humans , Alternative Splicing , Heart Failure/diagnosis , Heart Failure/genetics , Heart Failure/therapy , Myocardium/metabolism , Cardiomyopathies/metabolism , Proteomics
4.
Nat Cell Biol ; 24(11): 1666-1676, 2022 11.
Article in English | MEDLINE | ID: mdl-36344775

ABSTRACT

Despite their fundamental role in assessing (patho)physiological cell states, conventional gene reporters can follow gene expression but leave scars on the proteins or substantially alter the mature messenger RNA. Multi-time-point measurements of non-coding RNAs are currently impossible without modifying their nucleotide sequence, which can alter their native function, half-life and localization. Thus, we developed the intron-encoded scarless programmable extranuclear cistronic transcript (INSPECT) as a minimally invasive transcriptional reporter embedded within an intron of a gene of interest. Post-transcriptional excision of INSPECT results in the mature endogenous RNA without sequence alterations and an additional engineered transcript that leaves the nucleus by hijacking the nuclear export machinery for subsequent translation into a reporter or effector protein. We showcase its use in monitoring interleukin-2 (IL2) after T cell activation and tracking the transcriptional dynamics of the long non-coding RNA (lncRNA) NEAT1 during CRISPR interference-mediated perturbation. INSPECT is a method for monitoring gene transcription without altering the mature lncRNA or messenger RNA of the target of interest.


Subject(s)
RNA, Long Noncoding , Introns/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , RNA, Messenger/metabolism , Base Sequence
5.
Am J Physiol Heart Circ Physiol ; 323(6): H1296-H1310, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36367695

ABSTRACT

RBM20 cardiomyopathy is an arrhythmogenic form of dilated cardiomyopathy caused by mutations in the splicing factor RBM20. A recent study found a more severe phenotype in male patients with RBM20 cardiomyopathy patients than in female patients. Here, we aim to determine sex differences in an animal model of RBM20 cardiomyopathy and investigate potential underlying mechanisms. In addition, we aim to determine sex and gender differences in clinical parameters in a novel RBM20 cardiomyopathy patient cohort. We characterized an Rbm20 knockout (KO) mouse model, and show that splicing of key RBM20 targets, cardiac function, and arrhythmia susceptibility do not differ between sexes. Next, we performed deep phenotyping of these mice, and show that male and female Rbm20-KO mice possess transcriptomic and phosphoproteomic differences. Hypothesizing that these differences may influence the heart's ability to compensate for stress, we exposed Rbm20-KO mice to acute catecholaminergic stimulation and again found no functional differences. We also replicate the lack of functional differences in a mouse model with the Rbm20-R636Q mutation. Lastly, we present a patient cohort of 33 RBM20 cardiomyopathy patients and show that these patients do not possess sex and gender differences in disease severity. Current mouse models of RBM20 cardiomyopathy show more pronounced changes in gene expression and phosphorylation of cardiac proteins in male mice, but no sex differences in cardiac morphology and function. Moreover, other than reported before, male RBM20 cardiomyopathy patients do not present with worse cardiac function in a patient cohort from Germany and the Netherlands.NEW & NOTEWORTHY Optimal management of the cardiac disease is increasingly personalized, partly because of differences in outcomes between sexes. RBM20 cardiomyopathy has been described to be more severe in male patients, and this carries the risk that male patients are more scrutinized in the clinic than female patients. Our findings do not support this observation and suggest that treatment should not differ between male and female RBM20 cardiomyopathy patients, but instead should focus on the underlying disease mechanism.


Subject(s)
Cardiomyopathies , RNA-Binding Proteins , Mice , Male , Female , Animals , RNA-Binding Proteins/genetics , Arrhythmias, Cardiac/genetics , Mutation , Mice, Knockout , Severity of Illness Index
6.
Stem Cell Reports ; 15(6): 1220-1232, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33217325

ABSTRACT

Membrane-free intracellular biocondensates are enclosures of proteins and nucleic acids that form by phase separation. Extensive ensembles of nuclear "membraneless organelles" indicate their involvement in genome regulation. Indeed, nuclear bodies have been linked to regulation of gene expression by formation of condensates made of chromatin and RNA processing factors. Important questions pertain to the involvement of membraneless organelles in determining cell identity through their cell-type-specific composition and function. Paraspeckles provide a prism to these questions because they exhibit striking cell-type-specific patterns and since they are crucial in embryogenesis. Here, we outline known interactions between paraspeckles and chromatin, and postulate how such interactions may be important in regulation of cell fate transitions. Moreover, we propose long non-coding RNAs (lncRNAs) as candidates for similar regulation because many form foci that resemble biocondensates and exhibit dynamic patterns during differentiation. Finally, we outline approaches that could ascertain how chromatin-associated membraneless organelles regulate cellular differentiation.


Subject(s)
Cell Differentiation/physiology , Chromatin/metabolism , Embryo, Mammalian/embryology , Embryonic Development/physiology , Organelles/metabolism , RNA, Long Noncoding/metabolism , Animals , Chromatin/genetics , Humans , RNA Processing, Post-Transcriptional/physiology , RNA, Long Noncoding/genetics
7.
Mol Cell ; 78(5): 941-950.e12, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32464092

ABSTRACT

mRNAs enriched in membraneless condensates provide functional compartmentalization within cells. The mechanisms that recruit transcripts to condensates are under intense study; however, how mRNAs organize once they reach a granule remains poorly understood. Here, we report on a self-sorting mechanism by which multiple mRNAs derived from the same gene assemble into discrete homotypic clusters. We demonstrate that in vivo mRNA localization to granules and self-assembly within granules are governed by different mRNA features: localization is encoded by specific RNA regions, whereas self-assembly involves the entire mRNA, does not involve sequence-specific, ordered intermolecular RNA:RNA interactions, and is thus RNA sequence independent. We propose that the ability of mRNAs to self-sort into homotypic assemblies is an inherent property of an messenger ribonucleoprotein (mRNP) that is augmented under conditions that increase RNA concentration, such as upon enrichment in RNA-protein granules, a process that appears conserved in diverse cellular contexts and organisms.


Subject(s)
Cytoplasmic Granules/physiology , RNA, Messenger/genetics , Ribonucleoproteins/metabolism , Animals , Cytoplasmic Granules/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Nuclear Proteins/metabolism , Organelles/physiology , RNA/genetics , RNA Transport/genetics , RNA, Messenger/metabolism , Ribonucleoproteins/genetics
8.
BMC Biol ; 18(1): 42, 2020 04 22.
Article in English | MEDLINE | ID: mdl-32321486

ABSTRACT

BACKGROUND: Many long noncoding RNAs (lncRNAs) have been implicated in general and cell type-specific molecular regulation. Here, we asked what underlies the fundamental basis for the seemingly random appearance of nuclear lncRNA condensates in cells, and we sought compounds that can promote the disintegration of lncRNA condensates in vivo. RESULTS: As a basis for comparing lncRNAs and cellular properties among different cell types, we screened lncRNAs in human pluripotent stem cells (hPSCs) that were differentiated to an atlas of cell lineages. We found that paraspeckles, which form by aggregation of the lncRNA NEAT1, are scaled by the size of the nucleus, and that small DNA-binding molecules promote the disintegration of paraspeckles and other lncRNA condensates. Furthermore, we found that paraspeckles regulate the differentiation of hPSCs. CONCLUSIONS: Positive correlation between the size of the nucleus and the number of paraspeckles exist in numerous types of human cells. The tethering and structure of paraspeckles, as well as other lncRNAs, to the genome can be disrupted by small molecules that intercalate in DNA. The structure-function relationship of lncRNAs that regulates stem cell differentiation is likely to be determined by the dynamics of nucleus size and binding site accessibility.


Subject(s)
Cell Differentiation , Pluripotent Stem Cells/physiology , RNA, Long Noncoding/metabolism , Cell Nucleus/genetics , Cell Nucleus/physiology , DNA/genetics , DNA/physiology , Humans
9.
Mol Cell ; 74(5): 951-965.e13, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31047794

ABSTRACT

RNA-binding proteins (RBPs) and long non-coding RNAs (lncRNAs) are key regulators of gene expression, but their joint functions in coordinating cell fate decisions are poorly understood. Here we show that the expression and activity of the RBP TDP-43 and the long isoform of the lncRNA Neat1, the scaffold of the nuclear compartment "paraspeckles," are reciprocal in pluripotent and differentiated cells because of their cross-regulation. In pluripotent cells, TDP-43 represses the formation of paraspeckles by enhancing the polyadenylated short isoform of Neat1. TDP-43 also promotes pluripotency by regulating alternative polyadenylation of transcripts encoding pluripotency factors, including Sox2, which partially protects its 3' UTR from miR-21-mediated degradation. Conversely, paraspeckles sequester TDP-43 and other RBPs from mRNAs and promote exit from pluripotency and embryonic patterning in the mouse. We demonstrate that cross-regulation between TDP-43 and Neat1 is essential for their efficient regulation of a broad network of genes and, therefore, of pluripotency and differentiation.


Subject(s)
Cell Differentiation/genetics , DNA-Binding Proteins/genetics , Mouse Embryonic Stem Cells/metabolism , RNA, Long Noncoding/genetics , Animals , Cell Nucleus/genetics , Cell Nucleus/metabolism , DNA-Binding Proteins/metabolism , Humans , Mice , MicroRNAs/genetics , Pluripotent Stem Cells/metabolism , Polyadenylation/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
10.
J Cell Sci ; 132(5)2019 03 07.
Article in English | MEDLINE | ID: mdl-30745340

ABSTRACT

The GGGGCC (G4C2) repeat expansion mutation in the C9ORF72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Transcription of the repeat and formation of nuclear RNA foci, which sequester specific RNA-binding proteins, is one of the possible pathological mechanisms. Here, we show that (G4C2) n repeat RNA predominantly associates with essential paraspeckle proteins SFPQ, NONO, RBM14, FUS and hnRNPH and colocalizes with known paraspeckle-associated RNA hLinc-p21. As formation of paraspeckles in motor neurons has been associated with early phases of ALS, we investigated the extent of similarity between paraspeckles and (G4C2) n RNA foci. Overexpression of (G4C2)72 RNA results in their increased number and colocalization with SFPQ-stained nuclear bodies. These paraspeckle-like (G4C2)72 RNA foci form independently of the known paraspeckle scaffold, the long non-coding RNA NEAT1 Moreover, the knockdown of SFPQ protein in C9ORF72 expansion mutation-positive fibroblasts significantly reduces the number of (G4C2) n RNA foci. In conclusion, (G4C2) n RNA foci have characteristics of paraspeckles, which suggests that both RNA foci and paraspeckles play roles in FTD and ALS, and implies approaches for regulation of their formation.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Frontotemporal Dementia/genetics , Motor Neurons/physiology , Multiprotein Complexes/metabolism , Mutation/genetics , RNA, Nuclear/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Animals , C9orf72 Protein/metabolism , Cells, Cultured , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Intranuclear Space , Mice , PTB-Associated Splicing Factor/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Nuclear/genetics , RNA-Binding Protein FUS/metabolism , RNA-Binding Proteins/metabolism , Rats
11.
Oncotarget ; 8(65): 109575-109586, 2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29312630

ABSTRACT

Hematopoietic Stem Cells (HSCs) generate blood and immune cells through a hierarchical process of differentiation. Genes that regulate this process are of great interest for understanding normal and also malignant hematopoiesis. Surprisingly, however, very little is known about long-non-coding RNAs (lncRNA) in HSCs. Neat1 is a lncRNA that plays a major role in the formation of sub-nuclear structures called paraspeckles, and was reported to regulate proliferation and differentiation in other cells types. We detected Neat1 expression using RNA-seq data and RT-qPCR in HSCs, progenitors and effector immune cells, by specific detection of its isoforms. Neat1 is highly expressed in stem and progenitor cells, yet it shows significant reduction in granulocytes. Microscopically, Neat1 is detected as sharp nuclear foci. Paraspeckle proteins NONO and PSPC1 are detected as aggregated nuclear foci in fresh primary hematopoietic cells, and in cultured cells. Induction of differentiation in vitro was found to enhance Neat1 expression. Taken together, our data demonstrate for the first time the expression of Neat1 and paraspeckles formation in HSCs and along hematopoiesis.

12.
Dev Cell ; 39(5): 560-571, 2016 12 05.
Article in English | MEDLINE | ID: mdl-27923120

ABSTRACT

Inherited mtDNA mutations cause severe human disease. In most species, mitochondria are inherited maternally through mechanisms that are poorly understood. Genes that specifically control the inheritance of mitochondria in the germline are unknown. Here, we show that the long isoform of the protein Oskar regulates the maternal inheritance of mitochondria in Drosophila melanogaster. We show that, during oogenesis, mitochondria accumulate at the oocyte posterior, concurrent with the bulk streaming and churning of the oocyte cytoplasm. Long Oskar traps and maintains mitochondria at the posterior at the site of primordial germ cell (PGC) formation through an actin-dependent mechanism. Mutating long oskar strongly reduces the number of mtDNA molecules inherited by PGCs. Therefore, Long Oskar ensures germline transmission of mitochondria to the next generation. These results provide molecular insight into how mitochondria are passed from mother to offspring, as well as how they are positioned and asymmetrically partitioned within polarized cells.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Genes, Insect , Genes, Mitochondrial/genetics , Actins/metabolism , Animals , DNA Copy Number Variations , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/metabolism , Embryonic Germ Cells/metabolism , Female , Humans , Oogenesis/genetics , Protein Isoforms/genetics
13.
Nat Commun ; 6: 7962, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26242323

ABSTRACT

Germ granules, specialized ribonucleoprotein particles, are a hallmark of all germ cells. In Drosophila, an estimated 200 mRNAs are enriched in the germ plasm, and some of these have important, often conserved roles in germ cell formation, specification, survival and migration. How mRNAs are spatially distributed within a germ granule and whether their position defines functional properties is unclear. Here we show, using single-molecule FISH and structured illumination microscopy, a super-resolution approach, that mRNAs are spatially organized within the granule whereas core germ plasm proteins are distributed evenly throughout the granule. Multiple copies of single mRNAs organize into 'homotypic clusters' that occupy defined positions within the center or periphery of the granule. This organization, which is maintained during embryogenesis and independent of the translational or degradation activity of mRNAs, reveals new regulatory mechanisms for germ plasm mRNAs that may be applicable to other mRNA granules.


Subject(s)
Cytoplasmic Granules/metabolism , Drosophila/metabolism , Germ Cells/metabolism , RNA, Messenger/metabolism , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...