Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 25(10): 1900-1911, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26911675

ABSTRACT

Limb-girdle muscular dystrophies are a genetically diverse group of diseases characterized by chronic muscle wasting and weakness. Recessive mutations in ANO5 (TMEM16E) have been directly linked to several clinical phenotypes including limb-girdle muscular dystrophy type 2L and Miyoshi myopathy type 3, although the pathogenic mechanism has remained elusive. ANO5 is a member of the Anoctamin/TMEM16 superfamily that encodes both ion channels and regulators of membrane phospholipid scrambling. The phenotypic overlap of ANO5 myopathies with dysferlin-associated muscular dystrophies has inspired the hypothesis that ANO5, like dysferlin, may be involved in the repair of muscle membranes following injury. Here we show that Ano5-deficient mice have reduced capacity to repair the sarcolemma following laser-induced damage, exhibit delayed regeneration after cardiotoxin injury and suffer from defective myoblast fusion necessary for the proper repair and regeneration of multinucleated myotubes. Together, these data suggest that ANO5 plays an important role in sarcolemmal membrane dynamics. Genbank Mouse Genome Informatics accession no. 3576659.


Subject(s)
Chloride Channels/genetics , Distal Myopathies/genetics , Muscular Atrophy/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Animals , Anoctamins , Disease Models, Animal , Humans , Mice , Mice, Knockout , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Muscular Dystrophies, Limb-Girdle/pathology , Mutation , Sarcolemma/pathology
2.
Ann Clin Transl Neurol ; 2(3): 256-70, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25815352

ABSTRACT

OBJECTIVE: Dysferlinopathies are a family of untreatable muscle disorders caused by mutations in the dysferlin gene. Lack of dysferlin protein results in progressive dystrophy with chronic muscle fiber loss, inflammation, fat replacement, and fibrosis; leading to deteriorating muscle weakness. The objective of this work is to demonstrate efficient and safe restoration of dysferlin expression following gene therapy treatment. METHODS: Traditional gene therapy is restricted by the packaging capacity limit of adeno-associated virus (AAV), however, use of a dual vector strategy allows for delivery of over-sized genes, including dysferlin. The two vector system (AAV.DYSF.DV) packages the dysferlin cDNA utilizing AAV serotype rh.74 through the use of two discrete vectors defined by a 1 kb region of homology. Delivery of AAV.DYSF.DV via intramuscular and vascular delivery routes in dysferlin deficient mice and nonhuman primates was compared for efficiency and safety. RESULTS: Treated muscles were tested for dysferlin expression, overall muscle histology, and ability to repair following injury. High levels of dysferlin overexpression was shown for all muscle groups treated as well as restoration of functional outcome measures (membrane repair ability and diaphragm specific force) to wild-type levels. In primates, strong dysferlin expression was demonstrated with no safety concerns. INTERPRETATION: Treated muscles showed high levels of dysferlin expression with functional restoration with no evidence of toxicity or immune response providing proof of principle for translation to dysferlinopathy patients.

3.
PLoS Negl Trop Dis ; 8(8): e2988, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25144195

ABSTRACT

Infection of susceptible hosts by the encapsulated Gram-negative bacterium Burkholderia pseudomallei (Bp) causes melioidosis, with septic patients attaining mortality rates ≥ 40%. Due to its high infectivity through inhalation and limited effective therapies, Bp is considered a potential bioweapon. Thus, there is great interest in identifying immune effectors that effectively kill Bp. Our goal is to compare the relative abilities of murine macrophages and neutrophils to clear Bp, as well as determine the importance of serum opsonins and bacterial capsule. Our findings indicate that murine macrophages and neutrophils are inherently unable to clear either unopsonized Bp or the relatively-avirulent acapsular bacterium B. thailandensis (Bt). Opsonization of Bp and Bt with complement or pathogen-specific antibodies increases macrophage-uptake, but does not promote clearance, although antibody-binding enhances complement deposition. In contrast, complement opsonization of Bp and Bt causes enhanced uptake and killing by neutrophils, which is linked with rapid ROS induction against bacteria exhibiting a threshold level of complement deposition. Addition of bacteria-specific antibodies enhances complement deposition, but antibody-binding alone cannot elicit neutrophil clearance. Bp capsule provides some resistance to complement deposition, but is not anti-phagocytic or protective against reactive oxygen species (ROS)-killing. Macrophages were observed to efficiently clear Bp only after pre-activation with IFNγ, which is independent of serum- and/or antibody-opsonization. These studies indicate that antibody-enhanced complement activation is sufficient for neutrophil-clearance of Bp, whereas macrophages are ineffective at clearing serum-opsonized Bp unless pre-activated with IFNγ. This suggests that effective immune therapies would need to elicit both antibodies and Th1-adaptive responses for successful prevention/eradication of melioidosis.


Subject(s)
Bacterial Capsules/immunology , Burkholderia pseudomallei/immunology , Macrophages/immunology , Neutrophils/immunology , Opsonin Proteins/immunology , Phagocytosis , Animals , Blood Bactericidal Activity , Cells, Cultured , Complement System Proteins/immunology , Female , Humans , Interferon-gamma/physiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism
4.
PLoS One ; 7(6): e39233, 2012.
Article in English | MEDLINE | ID: mdl-22720081

ABSTRACT

The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV) gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb) negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9). Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes.


Subject(s)
Dependovirus/genetics , Gene Transfer Techniques , Genetic Vectors , Membrane Proteins/genetics , Muscle Proteins/genetics , Recombination, Genetic , Dysferlin , Humans
5.
BMC Microbiol ; 10: 250, 2010 Sep 28.
Article in English | MEDLINE | ID: mdl-20920184

ABSTRACT

BACKGROUND: Burkholderia pseudomallei and Burkholderia mallei cause the diseases melioidosis and glanders, respectively. A well-studied aspect of pathogenesis by these closely-related bacteria is their ability to invade and multiply within eukaryotic cells. In contrast, the means by which B. pseudomallei and B. mallei adhere to cells are poorly defined. The purpose of this study was to identify adherence factors expressed by these organisms. RESULTS: Comparative sequence analyses identified a gene product in the published genome of B. mallei strain ATCC23344 (locus # BMAA0649) that resembles the well-characterized Yersinia enterocolitica autotransporter adhesin YadA. The gene encoding this B. mallei protein, designated boaA, was expressed in Escherichia coli and shown to significantly increase adherence to human epithelial cell lines, specifically HEp2 (laryngeal cells) and A549 (type II pneumocytes), as well as to cultures of normal human bronchial epithelium (NHBE). Consistent with these findings, disruption of the boaA gene in B. mallei ATCC23344 reduced adherence to all three cell types by ~50%. The genomes of the B. pseudomallei strains K96243 and DD503 were also found to contain boaA and inactivation of the gene in DD503 considerably decreased binding to monolayers of HEp2 and A549 cells and to NHBE cultures.A second YadA-like gene product highly similar to BoaA (65% identity) was identified in the published genomic sequence of B. pseudomallei strain K96243 (locus # BPSL1705). The gene specifying this protein, termed boaB, appears to be B. pseudomallei-specific. Quantitative attachment assays demonstrated that recombinant E. coli expressing BoaB displayed greater binding to A549 pneumocytes, HEp2 cells and NHBE cultures. Moreover, a boaB mutant of B. pseudomallei DD503 showed decreased adherence to these respiratory cells. Additionally, a B. pseudomallei strain lacking expression of both boaA and boaB was impaired in its ability to thrive inside J774A.1 murine macrophages, suggesting a possible role for these proteins in survival within professional phagocytic cells. CONCLUSIONS: The boaA and boaB genes specify adhesins that mediate adherence to epithelial cells of the human respiratory tract. The boaA gene product is shared by B. pseudomallei and B. mallei whereas BoaB appears to be a B. pseudomallei-specific adherence factor.


Subject(s)
Adhesins, Bacterial/genetics , Burkholderia mallei/genetics , Burkholderia pseudomallei/genetics , Epithelial Cells/microbiology , Amino Acid Sequence , Animals , Burkholderia mallei/classification , Burkholderia mallei/pathogenicity , Burkholderia pseudomallei/classification , Burkholderia pseudomallei/pathogenicity , Cell Line , Female , Gene Expression Regulation, Bacterial , Genes, Bacterial , Humans , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Sequence Analysis, DNA , Species Specificity
6.
BMC Res Notes ; 1: 3, 2008.
Article in English | MEDLINE | ID: mdl-18611286

ABSTRACT

BACKGROUND: Some mutations in the internal regions of exons occur within splicing enhancers and silencers, influencing the pattern of alternative splicing in the corresponding genes. To understand how these sequence changes affect splicing, we created a database of these mutations. FINDINGS: The Alternative Splicing Mutation Database (ASMD) serves as a repository for all exonic mutations not associated with splicing junctions that measurably change the pattern of alternative splicing. In this initial published release (version 1.2), only human sequences are present, but the ASMD will grow to include other organisms, (see Availability and requirements section for the ASMD web address).This relational database allows users to investigate connections between mutations and features of the surrounding sequences, including flanking sequences, RNA secondary structures and strengths of splice junctions. Splicing effects of the mutations are quantified by the relative presence of alternative mRNA isoforms with and without a given mutation. This measure is further categorized by the accuracy of the experimental methods employed. The database currently contains 170 mutations in 66 exons, yet these numbers increase regularly.We developed an algorithm to derive a table of oligonucleotide Splicing Potential (SP) values from the ASMD dataset. We present the SP concept and tools in detail in our corresponding article. CONCLUSION: The current data set demonstrates that mutations affecting splicing are located throughout exons and might be enriched within local RNA secondary structures. Exons from the ASMD have below average splicing junction strength scores, but the difference is small and is judged not to be significant.

7.
BMC Res Notes ; 1: 4, 2008.
Article in English | MEDLINE | ID: mdl-18611287

ABSTRACT

BACKGROUND: The Alternative Splicing Mutation Database (ASMD) presents a collection of all known mutations inside human exons which affect splicing enhancers and silencers and cause changes in the alternative splicing pattern of the corresponding genes. FINDINGS: An algorithm was developed to derive a Splicing Potential (SP) table from the ASMD information. This table characterizes the influence of each oligonucleotide on the splicing effectiveness of the exon containing it. If the SP value for an oligonucleotide is positive, it promotes exon retention, while negative SP values mean the sequence favors exon skipping. The merit of the SP approach is the ability to separate splicing signals from a wide range of sequence motifs enriched in exonic sequences that are attributed to protein-coding properties and/or translation efficiency. Due to its direct derivation from observed splice site selection, SP has an advantage over other computational approaches for predicting alternative splicing. CONCLUSION: We show that a vast majority of known exonic splicing enhancers have highly positive cumulative SP values, while known splicing silencers have core motifs with strongly negative cumulative SP values. Our approach allows for computation of the cumulative SP value of any sequence segment and, thus, gives researchers the ability to measure the possible contribution of any sequence to the pattern of splicing.

SELECTION OF CITATIONS
SEARCH DETAIL
...