Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
N Engl J Med ; 375(14): 1355-1364, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27653382

ABSTRACT

BACKGROUND: The senses of touch and proprioception evoke a range of perceptions and rely on the ability to detect and transduce mechanical force. The molecular and neural mechanisms underlying these sensory functions remain poorly defined. The stretch-gated ion channel PIEZO2 has been shown to be essential for aspects of mechanosensation in model organisms. METHODS: We performed whole-exome sequencing analysis in two patients who had unique neuromuscular and skeletal symptoms, including progressive scoliosis, that did not conform to standard diagnostic classification. In vitro and messenger RNA assays, functional brain imaging, and psychophysical and kinematic tests were used to establish the effect of the genetic variants on protein function and somatosensation. RESULTS: Each patient carried compound-inactivating variants in PIEZO2, and each had a selective loss of discriminative touch perception but nevertheless responded to specific types of gentle mechanical stimulation on hairy skin. The patients had profoundly decreased proprioception leading to ataxia and dysmetria that were markedly worse in the absence of visual cues. However, they had the ability to perform a range of tasks, such as walking, talking, and writing, that are considered to rely heavily on proprioception. CONCLUSIONS: Our results show that PIEZO2 is a determinant of mechanosensation in humans. (Funded by the National Institutes of Health Intramural Research Program.).


Subject(s)
Gene Silencing , Ion Channels/genetics , Proprioception/genetics , Sensation Disorders/genetics , Touch/genetics , Adolescent , Animals , Child , Female , Gene Transfer Techniques , HEK293 Cells , Humans , Ion Channels/metabolism , Ion Channels/physiology , Mechanotransduction, Cellular/genetics , Mice , Phenotype , Proprioception/physiology , RNA, Messenger/metabolism , Sensation Disorders/physiopathology , Sequence Analysis, DNA , Touch/physiology , Vibration
2.
Am J Hum Genet ; 93(1): 29-41, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23768512

ABSTRACT

Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is required for O-mannosylation of proteins, including α-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced α-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in fibroblasts from an affected individual partially restored glycosylation of α-DG. Whereas wild-type GMPPB localized to the cytoplasm, five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally, knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-DG.


Subject(s)
Dystroglycans/metabolism , Muscular Dystrophies, Limb-Girdle/genetics , Mutation, Missense , Nucleotidyltransferases/metabolism , Animals , Child, Preschool , DNA Mutational Analysis/methods , Dystroglycans/genetics , Eye Abnormalities/pathology , Female , Fibroblasts/enzymology , Fibroblasts/pathology , Genetic Association Studies/methods , Glycosylation , Guanosine Diphosphate Mannose/metabolism , Heterozygote , Humans , Infant , Infant, Newborn , Male , Muscle, Skeletal/enzymology , Muscle, Skeletal/pathology , Muscular Dystrophies, Limb-Girdle/enzymology , Nucleotidyltransferases/genetics , Zebrafish/genetics , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...