Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Mol Cell ; 83(20): 3575-3577, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37863023
3.
mBio ; 14(2): e0002823, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36856409

ABSTRACT

Recent studies in bacteria have suggested that the broadly conserved but enigmatic DedA proteins function as undecaprenyl-phosphate (UndP) flippases, recycling this essential lipid carrier. To determine whether all DedA proteins have UndP flippase activity, we performed a phylogenetic analysis and correlated our findings to previously published experimental results and predicted structures. We uncovered three major DedA subfamilies: one contains UndP flippases, the second contains putative phospholipid flippases and is associated with aerobic metabolism, and the third is found only in specific Gram-negative phyla. IMPORTANCE DedA family proteins are highly conserved and nearly ubiquitous integral membrane proteins found in archaea, bacteria, and eukaryotes. Recent work revealed that eukaryotic DedA proteins are phospholipid scramblases and that some bacterial DedA proteins are undecaprenyl phosphate flippases. We performed a phylogenetic analysis of this protein family in bacteria that revealed 3 DedA subfamilies with distinct phylogenetic distributions, genomic contexts, and putative functions. Our bioinformatic analysis lays the groundwork for future experimental studies on the role of DedA proteins in maintaining and modifying the membrane.


Subject(s)
Bacteria , Membrane Proteins , Phylogeny , Bacteria/genetics , Bacteria/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Phospholipids/metabolism , Eukaryota/genetics
4.
bioRxiv ; 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36712119

ABSTRACT

Recent studies in bacteria suggested that the broadly conserved but enigmatic DedA proteins function as undecaprenyl-phosphate (UndP) flippases, recycling this essential lipid carrier. To determine whether all DedA proteins have UndP flippase activity, we performed a phylogenetic analysis and correlated it to previously published experimental results and predicted structures. We uncovered three major DedA subfamilies: one contains UndP flippases, the second contains putative phospholipid flippases and is associated with aerobic metabolism, and the third is found only in specific Gram-negative phyla. IMPORTANCE: DedA-family proteins are highly conserved and nearly ubiquitous integral membrane proteins found in Archaea, Bacteria, and Eukaryotes. Recent work revealed that eukaryotic DedA proteins are phospholipid scramblases and some bacterial DedA proteins are undecaprenyl phosphate flippases. We perform a phylogenetic analysis of this protein family in Bacteria revealing 3 DedA subfamilies with distinct phylogenetic distributions, genomic contexts, and putative functions. Our analysis lays the groundwork for a deeper understanding of DedA proteins and their role in maintaining and modifying the membrane.

5.
mBio ; 13(5): e0138822, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36069446

ABSTRACT

Many bacterial species typically live in complex three-dimensional biofilms, yet much remains unknown about differences in essential processes between nonbiofilm and biofilm lifestyles. Here, we created a CRISPR interference (CRISPRi) library of knockdown strains covering all known essential genes in the biofilm-forming Bacillus subtilis strain NCIB 3610 and investigated growth, biofilm colony wrinkling, and sporulation phenotypes of the knockdown library. First, we showed that gene essentiality is largely conserved between liquid and surface growth and between two media. Second, we quantified biofilm colony wrinkling using a custom image analysis algorithm and found that fatty acid synthesis and DNA gyrase knockdown strains exhibited increased wrinkling independent of biofilm matrix gene expression. Third, we designed a high-throughput screen to quantify sporulation efficiency after essential gene knockdown; we found that partial knockdowns of essential genes remained competent for sporulation in a sporulation-inducing medium, but knockdown of essential genes involved in fatty acid synthesis exhibited reduced sporulation efficiency in LB, a medium with generally lower levels of sporulation. We conclude that a subset of essential genes are particularly important for biofilm structure and sporulation/germination and suggest a previously unappreciated and multifaceted role for fatty acid synthesis in bacterial lifestyles and developmental processes. IMPORTANCE For many bacteria, life typically involves growth in dense, three-dimensional communities called biofilms that contain cells with differentiated roles held together by extracellular matrix. To examine how essential gene function varies between vegetative growth and the developmental states of biofilm formation and sporulation, we created and screened a comprehensive library of strains using CRISPRi to knockdown expression of each essential gene in the biofilm-capable Bacillus subtilis strain 3610. High-throughput assays and computational algorithms identified a subset of essential genes involved in biofilm wrinkling and sporulation and indicated that fatty acid synthesis plays important and multifaceted roles in bacterial development.


Subject(s)
Bacillus subtilis , DNA Gyrase , Bacillus subtilis/metabolism , Biofilms , Fatty Acids/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
6.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35064089

ABSTRACT

Kasugamycin (KSG) is an aminoglycoside antibiotic widely used in agriculture and exhibits considerable medical potential. Previous studies suggested that KSG interferes with translation by blocking binding of canonical messenger RNA (mRNA) and initiator transfer tRNA (tRNA) to the small ribosomal subunit, thereby preventing initiation of protein synthesis. Here, by using genome-wide approaches, we show that KSG can interfere with translation even after the formation of the 70S initiation complex on mRNA, as the extent of KSG-mediated translation inhibition correlates with increased occupancy of start codons by 70S ribosomes. Even at saturating concentrations, KSG does not completely abolish translation, allowing for continuing expression of some Escherichia coli proteins. Differential action of KSG significantly depends on the nature of the mRNA residue immediately preceding the start codon, with guanine in this position being the most conducive to inhibition by the drug. In addition, the activity of KSG is attenuated by translational coupling as genes whose start codons overlap with the coding regions or the stop codons of the upstream cistrons tend to be less susceptible to drug-mediated inhibition. Altogether, our findings reveal KSG as an example of a small ribosomal subunit-targeting antibiotic with a well-pronounced context specificity of action.


Subject(s)
Aminoglycosides/pharmacology , Binding Sites , Peptide Chain Initiation, Translational/drug effects , RNA, Messenger/genetics , Ribosomes/metabolism , Aminoglycosides/chemistry , Codon, Initiator , Molecular Structure , Open Reading Frames , Protein Binding , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/pharmacology , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Ribosomes/chemistry , Structure-Activity Relationship
7.
mBio ; 13(1): e0272621, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35073755

ABSTRACT

Ceragenins are a family of synthetic amphipathic molecules designed to mimic the properties of naturally occurring cationic antimicrobial peptides (CAMPs). Although ceragenins have potent antimicrobial activity, whether their mode of action is similar to that of CAMPs has remained elusive. Here, we reported the results of a comparative study of the bacterial responses to two well-studied CAMPs, LL37 and colistin, and two ceragenins with related structures, CSA13 and CSA131. Using transcriptomic and proteomic analyses, we found that Escherichia coli responded similarly to both CAMPs and ceragenins by inducing a Cpx envelope stress response. However, whereas E. coli exposed to CAMPs increased expression of genes involved in colanic acid biosynthesis, bacteria exposed to ceragenins specifically modulated functions related to phosphate transport, indicating distinct mechanisms of action between these two classes of molecules. Although traditional genetic approaches failed to identify genes that confer high-level resistance to ceragenins, using a Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi) approach we identified E. coli essential genes that when knocked down modify sensitivity to these molecules. Comparison of the essential gene-antibiotic interactions for each of the CAMPs and ceragenins identified both overlapping and distinct dependencies for their antimicrobial activities. Overall, this study indicated that, while some bacterial responses to ceragenins overlap those induced by naturally occurring CAMPs, these synthetic molecules target the bacterial envelope using a distinctive mode of action. IMPORTANCE The development of novel antibiotics is essential because the current arsenal of antimicrobials will soon be ineffective due to the widespread occurrence of antibiotic resistance. The development of naturally occurring cationic antimicrobial peptides (CAMPs) for therapeutics to combat antibiotic resistance has been hampered by high production costs and protease sensitivity, among other factors. The ceragenins are a family of synthetic CAMP mimics that kill a broad spectrum of bacterial species but are less expensive to produce, resistant to proteolytic degradation, and seemingly resistant to the development of high-level resistance. Determining how ceragenins function may identify new essential biological pathways of bacteria that are less prone to the development of resistance and will further our understanding of the design principles for maximizing the effects of synthetic CAMPs.


Subject(s)
Anti-Infective Agents , Antimicrobial Peptides , Escherichia coli , Proteomics , Bacteria , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Microbial Sensitivity Tests
8.
mBio ; 12(5): e0256121, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34634934

ABSTRACT

CRISPR interference (CRISPRi) has facilitated the study of essential genes in diverse organisms using both high-throughput and targeted approaches. Despite the promise of this technique, no comprehensive arrayed CRISPRi library targeting essential genes exists for the model bacterium Escherichia coli, or for any Gram-negative species. Here, we built and characterized such a library. Each of the ∼500 strains in our E. coli library contains an inducible, chromosomally integrated single guide RNA (sgRNA) targeting an essential (or selected nonessential) gene and can be mated with a pseudo-Hfr donor strain carrying a dcas9 cassette to create a CRISPRi knockdown strain. Using this system, we built an arrayed library of CRISPRi strains and performed population and single-cell growth and morphology measurements as well as targeted follow-up experiments. These studies found that inhibiting translation causes an extended lag phase, identified new modulators of cell morphology, and revealed that the morphogene mreB is subject to transcriptional feedback regulation, which is critical for the maintenance of morphology. Our findings highlight canonical and noncanonical roles for essential genes in numerous aspects of cellular homeostasis. IMPORTANCE Essential genes make up only ∼5 to 10% of the genetic complement in most organisms but occupy much of their protein synthesis and account for almost all antibiotic targets. Despite the importance of essential genes, their intractability has, until recently, hampered efforts to study them. CRISPRi has facilitated the study of essential genes by allowing inducible and titratable depletion. However, all large-scale CRISPRi studies in Gram-negative bacteria thus far have used plasmids to express CRISPRi components and have been constructed in pools, limiting their utility for targeted assays and complicating the determination of antibiotic effects. Here, we use a modular method to construct an arrayed library of chromosomally integrated CRISPRi strains targeting the essential genes of the model bacterium Escherichia coli. This library enables targeted studies of essential gene depletions and high-throughput determination of antibiotic targets and facilitates studies targeting the outer membrane, an essential component that serves as the major barrier to antibiotics.


Subject(s)
CRISPR-Cas Systems , Escherichia coli/genetics , Gene Knockdown Techniques/methods , Gene Library , Genes, Essential/genetics , Transcription, Genetic , Bacterial Proteins/metabolism , High-Throughput Screening Assays
9.
Annu Rev Genet ; 55: 377-400, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34530639

ABSTRACT

Bacteria often encounter temperature fluctuations in their natural habitats and must adapt to survive. The molecular response of bacteria to sudden temperature upshift or downshift is termed the heat shock response (HSR) or the cold shock response (CSR), respectively. Unlike the HSR, which activates a dedicated transcription factor that predominantly copes with heat-induced protein folding stress, the CSR is mediated by a diverse set of inputs. This review provides a picture of our current understanding of the CSR across bacteria. The fundamental aspects of CSR involved in sensing and adapting to temperature drop, including regulation of membrane fluidity, protein folding, DNA topology, RNA metabolism, and protein translation, are discussed. Special emphasis is placed on recent findings of a CSR circuitry in Escherichia coli mediated by cold shock family proteins and RNase R that monitors and modulates messenger RNA structure to facilitate global translation recovery during acclimation.


Subject(s)
Cold Temperature , Cold-Shock Response , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cold-Shock Response/genetics , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , RNA, Messenger/genetics
10.
STAR Protoc ; 2(2): 100521, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34027480

ABSTRACT

CRISPR interference is an increasingly popular method for perturbing gene expression. Guided by single-guide RNAs (sgRNAs), nuclease-deficient Cas9 proteins bind to specific DNA sequences and hinder transcription. Specificity is achieved through complementarity of the sgRNAs to the DNA. Changing complementarity by introducing single-nucleotide mismatches can be exploited to tune knockdown. Here, we present a computational pipeline to identify sgRNAs targeting specific genes in a bacterial genome, filter them, and titrate their activity by introducing mismatches. For complete details on the use and execution of this protocol, please refer to Hawkins et al. (2020).


Subject(s)
Base Pair Mismatch/genetics , CRISPR-Cas Systems/genetics , Genetic Techniques , RNA, Guide, Kinetoplastida/genetics , Transcription, Genetic/genetics , Computational Biology , Genome, Bacterial/genetics
11.
Mol Cell ; 81(10): 2201-2215.e9, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34019789

ABSTRACT

The multi-subunit bacterial RNA polymerase (RNAP) and its associated regulators carry out transcription and integrate myriad regulatory signals. Numerous studies have interrogated RNAP mechanism, and RNAP mutations drive Escherichia coli adaptation to many health- and industry-relevant environments, yet a paucity of systematic analyses hampers our understanding of the fitness trade-offs from altering RNAP function. Here, we conduct a chemical-genetic analysis of a library of RNAP mutants. We discover phenotypes for non-essential insertions, show that clustering mutant phenotypes increases their predictive power for drawing functional inferences, and demonstrate that some RNA polymerase mutants both decrease average cell length and prevent killing by cell-wall targeting antibiotics. Our findings demonstrate that RNAP chemical-genetic interactions provide a general platform for interrogating structure-function relationships in vivo and for identifying physiological trade-offs of mutations, including those relevant for disease and biotechnology. This strategy should have broad utility for illuminating the role of other important protein complexes.


Subject(s)
DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , Mutation/genetics , Amdinocillin/pharmacology , Bacterial Proteins/metabolism , Cell Death/drug effects , Chromosomes, Bacterial/genetics , Cytoprotection/drug effects , Cytoskeletal Proteins/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial/drug effects , Mutagenesis, Insertional/genetics , Peptides/metabolism , Phenotype , Structure-Activity Relationship , Transcription, Genetic , Uridine Diphosphate Glucose/metabolism
12.
Elife ; 102021 02 17.
Article in English | MEDLINE | ID: mdl-33594973

ABSTRACT

Life in a three-dimensional biofilm is typical for many bacteria, yet little is known about how strains interact in this context. Here, we created essential gene CRISPR interference knockdown libraries in biofilm-forming Bacillus subtilis and measured competitive fitness during colony co-culture with wild type. Partial knockdown of some translation-related genes reduced growth rates and led to out-competition. Media composition led some knockdowns to compete differentially as biofilm versus non-biofilm colonies. Cells depleted for the alanine racemase AlrA died in monoculture but survived in a biofilm colony co-culture via nutrient sharing. Rescue was enhanced in biofilm colony co-culture with a matrix-deficient parent due to a mutualism involving nutrient and matrix sharing. We identified several examples of mutualism involving matrix sharing that occurred in three-dimensional biofilm colonies but not when cultured in two dimensions. Thus, growth in a three-dimensional colony can promote genetic diversity through sharing of secreted factors and may drive evolution of mutualistic behavior.


Subject(s)
Bacillus subtilis/growth & development , Biofilms/growth & development , Symbiosis , Alanine Racemase/genetics , Alanine Racemase/metabolism , Bacillus subtilis/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Culture Media , Gene Expression Regulation, Bacterial , Gene Knockdown Techniques
13.
Nucleic Acids Res ; 49(2): 986-1005, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33398323

ABSTRACT

Extracytoplasmic function σ factors (ECFs) represent one of the major bacterial signal transduction mechanisms in terms of abundance, diversity and importance, particularly in mediating stress responses. Here, we performed a comprehensive phylogenetic analysis of this protein family by scrutinizing all proteins in the NCBI database. As a result, we identified an average of ∼10 ECFs per bacterial genome and 157 phylogenetic ECF groups that feature a conserved genetic neighborhood and a similar regulation mechanism. Our analysis expands previous classification efforts ∼50-fold, enriches many original ECF groups with previously unclassified proteins and identifies 22 entirely new ECF groups. The ECF groups are hierarchically related to each other and are further composed of subgroups with closely related sequences. This two-tiered classification allows for the accurate prediction of common promoter motifs and the inference of putative regulatory mechanisms across subgroups composing an ECF group. This comprehensive, high-resolution description of the phylogenetic distribution of the ECF family, together with the massive expansion of classified ECF sequences and an openly accessible data repository called 'ECF Hub' (https://www.computational.bio.uni-giessen.de/ecfhub), will serve as a powerful hypothesis-generator to guide future research in the field.


Subject(s)
Bacterial Proteins/chemistry , Multigene Family , Sigma Factor/classification , Amino Acid Sequence , Bacterial Proteins/genetics , Consensus Sequence , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/metabolism , Gene Expression Regulation, Bacterial , Phylogeny , Sequence Alignment , Sigma Factor/genetics , Signal Transduction , Substrate Specificity , Terminology as Topic
14.
Curr Opin Microbiol ; 59: 102-109, 2021 02.
Article in English | MEDLINE | ID: mdl-33285498

ABSTRACT

In this review we describe the application of CRISPR tools for functional genomics screens in bacteria, with a focus on the use of interference (CRISPRi) approaches. We review recent developments in CRISPRi titration, which has enabled essential gene functional screens, and genome-scale pooled CRISPRi screens. We summarize progress toward enabling CRISPRi screens in non-model and pathogenic bacteria, including the development of new dCas9 variants. Taking into account the current state of the field, we provide a forward-looking analysis of CRISPRi strategies for determining gene function in bacteria.


Subject(s)
Bacteria , Clustered Regularly Interspaced Short Palindromic Repeats , Genes, Bacterial , Bacteria/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genes, Bacterial/genetics , Genome, Bacterial/genetics
15.
Science ; 370(6522)2020 12 11.
Article in English | MEDLINE | ID: mdl-33303586

ABSTRACT

Determining structures of protein complexes is crucial for understanding cellular functions. Here, we describe an integrative structure determination approach that relies on in vivo measurements of genetic interactions. We construct phenotypic profiles for point mutations crossed against gene deletions or exposed to environmental perturbations, followed by converting similarities between two profiles into an upper bound on the distance between the mutated residues. We determine the structure of the yeast histone H3-H4 complex based on ~500,000 genetic interactions of 350 mutants. We then apply the method to subunits Rpb1-Rpb2 of yeast RNA polymerase II and subunits RpoB-RpoC of bacterial RNA polymerase. The accuracy is comparable to that based on chemical cross-links; using restraints from both genetic interactions and cross-links further improves model accuracy and precision. The approach provides an efficient means to augment integrative structure determination with in vivo observations.


Subject(s)
Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Protein Interaction Maps/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Histones/chemistry , Histones/genetics , Mutation , Protein Conformation , Protein Interaction Mapping , Saccharomyces cerevisiae/genetics
16.
Proc Natl Acad Sci U S A ; 117(52): 33496-33506, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33318184

ABSTRACT

Bacterial genomes are being sequenced at an exponentially increasing rate, but our inability to decipher their transcriptional wiring limits our ability to derive new biology from these sequences. De novo determination of regulatory interactions requires accurate prediction of regulators' DNA binding and precise determination of biologically significant binding sites. Here we address these challenges by solving the DNA-specificity code of extracytoplasmic function sigma factors (ECF σs), a major family of bacterial regulators, and determining their putative regulons. We generated an aligned collection of ECF σs and their promoters by leveraging the autoregulatory nature of ECF σs as a means of promoter discovery and analyzed it to identify and characterize the conserved amino acid-nucleotide interactions that determine promoter specificity. This enabled de novo prediction of ECF σ specificity, which we combined with a statistically rigorous phylogenetic footprinting pipeline based on precomputed orthologs to predict the direct targets of ∼67% of ECF σs. This global survey indicated that some ECF σs are conserved global regulators controlling many genes throughout the genome, which are important under many conditions, while others are local regulators, controlling a few closely linked genes in response to specific stimuli in select species. This analysis reveals important organizing principles of bacterial gene regulation and presents a conceptual and computational framework for deciphering gene regulatory networks.


Subject(s)
Cytoplasm/metabolism , Sigma Factor/metabolism , DNA, Bacterial/metabolism , Gene Expression Regulation, Bacterial , Models, Molecular , Mutation/genetics , Phylogeny , Promoter Regions, Genetic , Protein Binding , Regulon/genetics
17.
Cell Syst ; 11(5): 523-535.e9, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33080209

ABSTRACT

Essential genes are the hubs of cellular networks, but lack of high-throughput methods for titrating gene expression has limited our understanding of the fitness landscapes against which their expression levels are optimized. We developed a modified CRISPRi system leveraging the predictable reduction in efficacy of imperfectly matched sgRNAs to generate defined levels of CRISPRi activity and demonstrated its broad applicability. Using libraries of mismatched sgRNAs predicted to span the full range of knockdown levels, we characterized the expression-fitness relationships of most essential genes in Escherichia coli and Bacillus subtilis. We find that these relationships vary widely from linear to bimodal but are similar within pathways. Notably, despite ∼2 billion years of evolutionary separation between E. coli and B. subtilis, most essential homologs have similar expression-fitness relationships with rare but informative differences. Thus, the expression levels of essential genes may reflect homeostatic or evolutionary constraints shared between the two organisms.


Subject(s)
Bacillus subtilis/genetics , Escherichia coli/genetics , Genes, Essential/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , CRISPR-Cas Systems , Escherichia coli/metabolism , Gene Expression/genetics , Gene Expression Regulation, Bacterial/genetics , Genes, Essential/physiology , Genetic Fitness/genetics
18.
Environ Microbiol ; 22(9): 3937-3949, 2020 09.
Article in English | MEDLINE | ID: mdl-32743959

ABSTRACT

The Gram-positive bacterium Bacillus subtilis uses serine not only as a building block for proteins but also as an important precursor in many anabolic reactions. Moreover, a lack of serine results in the initiation of biofilm formation. However, excess serine inhibits the growth of B. subtilis. To unravel the underlying mechanisms, we isolated suppressor mutants that can tolerate toxic serine concentrations by three targeted and non-targeted genome-wide screens. All screens as well as genetic complementation in Escherichia coli identified the so far uncharacterized permease YbeC as the major serine transporter of B. subtilis. In addition to YbeC, the threonine transporters BcaP and YbxG make minor contributions to serine uptake. A strain lacking these three transporters was able to tolerate 100 mM serine whereas the wild type strain was already inhibited by 1 mM of the amino acid. The screen for serine-resistant mutants also identified mutations that result in increased serine degradation and in increased expression of threonine biosynthetic enzymes suggesting that serine toxicity results from interference with threonine biosynthesis.


Subject(s)
Amino Acid Transport Systems/metabolism , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Metabolic Networks and Pathways , Serine/metabolism , Threonine/metabolism , Amino Acid Transport Systems/genetics , Bacillus subtilis/drug effects , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Mutation , Serine/pharmacology , Threonine/genetics
19.
Nat Biotechnol ; 38(3): 355-364, 2020 03.
Article in English | MEDLINE | ID: mdl-31932729

ABSTRACT

A lack of tools to precisely control gene expression has limited our ability to evaluate relationships between expression levels and phenotypes. Here, we describe an approach to titrate expression of human genes using CRISPR interference and series of single-guide RNAs (sgRNAs) with systematically modulated activities. We used large-scale measurements across multiple cell models to characterize activities of sgRNAs containing mismatches to their target sites and derived rules governing mismatched sgRNA activity using deep learning. These rules enabled us to synthesize a compact sgRNA library to titrate expression of ~2,400 genes essential for robust cell growth and to construct an in silico sgRNA library spanning the human genome. Staging cells along a continuum of gene expression levels combined with single-cell RNA-seq readout revealed sharp transitions in cellular behaviors at gene-specific expression thresholds. Our work provides a general tool to control gene expression, with applications ranging from tuning biochemical pathways to identifying suppressors for diseases of dysregulated gene expression.


Subject(s)
Computational Biology/methods , Gene Expression , RNA, Guide, Kinetoplastida/genetics , Single-Cell Analysis/methods , CRISPR-Cas Systems , Deep Learning , Gene Editing , Genomic Library , HeLa Cells , Humans , K562 Cells , Phenotype , Sequence Analysis, RNA
20.
Mol Microbiol ; 112(2): 348-355, 2019 08.
Article in English | MEDLINE | ID: mdl-31115926

ABSTRACT

This special issue of Molecular Microbiology marks the 25th anniversary of the discovery of the extracytoplasmic function (ECF) σ factors, proteins that subsequently emerged as the largest group of alternative σ factors and one of the three major pillars of signal transduction in bacteria, alongside one- and two-component systems. A single bacterial genome can encode > 100 ECF σ factors, and combined with their cognate anti-σ factors, they represent a modular design that primarily functions in transmembrane signal transduction. Here, we first describe the immediate events that led to the 1994 publication in the Proceeding of the National Academy of Sciences USA, and then set them in the broader context of key events in the history of σ biology research.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/metabolism , Extracellular Space/metabolism , Sigma Factor/metabolism , Bacteria/genetics , Bacterial Proteins/genetics , Extracellular Space/genetics , Gene Expression Regulation, Bacterial , Sigma Factor/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...