Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Ann Clin Transl Neurol ; 10(7): 1106-1118, 2023 07.
Article in English | MEDLINE | ID: mdl-37208853

ABSTRACT

OBJECTIVE: Typical aging is associated with gradual cognitive decline and changes in brain structure. The observation that cognitive performance in mesial temporal lobe epilepsy (TLE) patients diverges from controls early in life with subsequent decline running in parallel would suggest an initial insult but does not support accelerated decline secondary to seizures. Whether TLE patients demonstrate similar trajectories of age-related gray (GM) and white matter (WM) changes as compared to healthy controls remains uncertain. METHODS: 3D T1-weighted and diffusion tensor images were acquired at a single site in 170 TLE patients (aged 23-74 years) with MRI signs of unilateral hippocampal sclerosis (HS, 77 right) and 111 healthy controls (aged 26-80 years). Global brain (GM, WM, total brain, and cerebrospinal fluid) and regional volumes (ipsi- and contralateral hippocampi), and fractional anisotropy (FA) of 10 tracts (three portions of corpus callosum, inferior longitudinal, inferior fronto-occipital and uncinate fasciculi, body of fornix, dorsal and parahippocampal-cingulum, and corticospinal tract) were compared between groups as a function of age. RESULTS: There were significant reductions of global brain and hippocampi volumes (greatest ipsilateral to HS), and FA of all 10 tracts in TLE versus controls. For TLE patients, regression lines run in parallel to those from controls for brain volumes and FA (for all tracts except the parahippocampal-cingulum and corticospinal tract) versus age across the adult lifespan. INTERPRETATION: These results imply a developmental hindrance occurring earlier in life (likely in childhood/neurodevelopmental stages) rather than accelerated atrophy/degeneration of most brain structures herein analyzed in patients with TLE.


Subject(s)
Epilepsy, Temporal Lobe , White Matter , Adult , Humans , Epilepsy, Temporal Lobe/diagnostic imaging , White Matter/diagnostic imaging , Longevity , Diffusion Tensor Imaging/methods , Brain/diagnostic imaging
2.
Epilepsia Open ; 8(1): 100-112, 2023 03.
Article in English | MEDLINE | ID: mdl-36461649

ABSTRACT

OBJECTIVE: High-resolution (1 mm isotropic) diffusion tensor imaging (DTI) of the hippocampus in temporal lobe epilepsy (TLE) patients has shown patterns of hippocampal subfield diffusion abnormalities, which were consistent with hippocampal sclerosis (HS) subtype on surgical histology. The objectives of this longitudinal imaging study were to determine the stability of focal hippocampus diffusion changes over time in TLE patients, compare diffusion and quantitative T2 abnormalities of the sclerotic hippocampus, and correlate presurgical mean diffusivity (MD) and T2 maps with postsurgical histology. METHODS: Nineteen TLE patients and 19 controls underwent two high-resolution (1 mm isotropic) DTI and 1.1 × 1.1 × 1 mm3  T2 relaxometry scans (in a subset of 16 TLE patients and 9 controls) of the hippocampus at 3T, with a 2.6 ± 0.8 year inter-scan interval. Within-participant hippocampal volume, MD and T2 were compared between the scans. Contralateral hippocampal changes 2.3 ± 1.0 years after surgery and ipsilateral preoperative MD maps versus postoperative subfield histopathology were evaluated in eight patients who underwent surgical resection of the hippocampus. RESULTS: Reduced volume and elevated MD and T2 of sclerotic hippocampi remained unchanged between longitudinal scans. Focal regions of elevated MD and T2 in bilateral hippocampi of HS TLE were detected consistently at both scans. Regions of high MD and T2 correlated and remained consistent over time. Volume, MD, and T2 remained unchanged in postoperative contralateral hippocampus. Regional elevations of MD identified subfield neuron loss on postsurgical histology with 88% sensitivity and 88% specificity. Focal T2 elevations identified subfield neuron loss with 75% sensitivity and 88% specificity. SIGNIFICANCE: Diffusion and T2 abnormalities in ipsilateral and contralateral hippocampi remained unchanged between the scans suggesting permanent microstructural alterations. MD and T2 demonstrated good sensitivity and specificity to detect hippocampal subfield neuron loss on postsurgical histology, supporting the potential that high-resolution hippocampal DTI and T2 could be used to diagnose HS subtype before surgery.


Subject(s)
Epilepsy, Temporal Lobe , Humans , Epilepsy, Temporal Lobe/surgery , Diffusion Tensor Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Hippocampus/pathology , Hippocampus/surgery , Longitudinal Studies , Sclerosis/pathology
3.
Front Neurol ; 13: 794668, 2022.
Article in English | MEDLINE | ID: mdl-35237228

ABSTRACT

OBJECTIVE: We examined the effect of a simple Delphi-method feedback on visual identification of high frequency oscillations (HFOs) in the ripple (80-250 Hz) band, and assessed the impact of this training intervention on the interrater reliability and generalizability of HFO evaluations. METHODS: We employed a morphology detector to identify potential HFOs at two thresholds and presented them to visual reviewers to assess the probability of each epoch containing an HFO. We recruited 19 board-certified epileptologists with various levels of experience to complete a series of HFO evaluations during three sessions. A Delphi-style intervention was used to provide feedback on the performance of each reviewer relative to their peers. A delayed-intervention paradigm was used, in which reviewers received feedback either before or after the second session. ANOVAs were used to assess the effect of the intervention on the reviewers' evaluations. Generalizability theory was used to assess the interrater reliability before and after the intervention. RESULTS: The intervention, regardless of when it occurred, resulted in a significant reduction in the variability between reviewers in both groups (p GroupDI = 0.037, p GroupEI = 0.003). Prior to the delayed-intervention, the group receiving the early intervention showed a significant reduction in variability (p GroupEI = 0.041), but the delayed-intervention group did not (p GroupDI = 0.414). Following the intervention, the projected number of reviewers required to achieve strong generalizability decreased from 35 to 16. SIGNIFICANCE: This study shows a robust effect of a Delphi-style intervention on the interrater variability, reliability, and generalizability of HFO evaluations. The observed decreases in HFO marking discrepancies across 14 of the 15 reviewers are encouraging: they are necessarily associated with an increase in interrater reliability, and therefore with a corresponding decrease in the number of reviewers required to achieve strong generalizability. Indeed, the reliability of all reviewers following the intervention was similar to that of experienced reviewers prior to intervention. Therefore, a Delphi-style intervention could be implemented either to sufficiently train any reviewer, or to further refine the interrater reliability of experienced reviewers. In either case, a Delphi-style intervention would help facilitate the standardization of HFO evaluations and its implementation in clinical care.

4.
Epilepsy Res ; 161: 106279, 2020 03.
Article in English | MEDLINE | ID: mdl-32105992

ABSTRACT

OBJECTIVE: Neuropathological studies indicate that hippocampal sclerosis (HS) consists of three subtypes (ILAE types 1-3 HS). However, HS subtypes currently can only be diagnosed by pathological analysis of hippocampal tissue resected during epilepsy surgery or at autopsy. In vivo diagnosis of HS subtypes holds potential to improve our understanding of these variants in the ipsilateral as well as contralateral hippocampus. In this study, we aimed to: i) evaluate the reliability of our histology-derived segmentation protocol when applied to in vivo MRI; and ii) characterize variability of HS subtypes along the hippocampal long axis in patients with epilepsy. METHODS: Eleven subjects with unilateral HS were compared with ten healthy controls. We used 4.7 T MRI to acquire high resolution MR Images of the hippocampus in each subject. In vivo MRI-based diagnoses of HS subtypes were then determined in each patient by two methods: i) hippocampal subfield volumetry of the entire hippocampal body; and ii) subfield area analysis at multiple thin slices throughout the hippocampal body. RESULTS: Hippocampal body subfield segmentation demonstrated excellent reliability and volumetry of the symptomatic hippocampus revealed abnormalities in all eleven patients. Six subjects demonstrated findings consistent with type 1 HS while five subjects had volumetry-defined atypical HS (two with type 2 HS & three with type 3 HS) in the symptomatic hippocampus, while five subjects were found to have type 3 HS in the contralateral hippocampus. Subfield area analyses demonstrated remarkable variability of HS subtypes along the hippocampal long axis, both ipsilateral and contralateral to the seizure focus. SIGNIFICANCE: Our results provide preliminary evidence that determining HS Subtype using in vivo MRI may allow preoperative diagnosis of ILAE HS subtypes. Further studies are essential to determine the pathological correlates of these neuroimaging findings. The heterogeneity of abnormalities observed along the long axis of the hippocampus is consistent with previous autopsy studies and highlights the necessity of studying the entire hippocampus both ipsilateral and contralateral to the seizure focus in these future studies.


Subject(s)
Epilepsy, Temporal Lobe/surgery , Hippocampus/pathology , Sclerosis/pathology , Seizures/pathology , Adult , Epilepsy, Temporal Lobe/pathology , Female , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Middle Aged , Reproducibility of Results , Young Adult
5.
Hippocampus ; 30(2): 156-161, 2020 02.
Article in English | MEDLINE | ID: mdl-31743546

ABSTRACT

There is a growing body of literature studying changes in hippocampal subfields in a variety of different neurological conditions, but this work has mainly focused on the hippocampal body given challenges in visualization of hippocampal anatomy in the head and tail when sectioned in the typical coronal image plane. Curved multiplanar reformatting (CMPR) is an image reconstruction method that can improve visualization of complex three-dimensional structures. The objective of this study was to determine whether CMPR could facilitate visualization of the human hippocampal anatomy along the entire caudal-rostral axis. CMPR was applied to high-resolution magnetic resonance imaging acquired ex vivo on four cadaveric hippocampal specimens at 4.7 T (T2-weighted, 0.2 × 0.2 × 0.5 mm3 ). CMPR provided clear visualization of the classic "interlocking C" appearance of the dentate gyrus and cornu ammonis along the entire caudal-rostral axis including the head and tail, which otherwise show complex anatomy on the standard coronal slices. CMPR facilitated visualization of hippocampal anatomy providing the impetus to develop simplified approaches to delineate subfields along the entire hippocampus including the usually neglected head and tail.


Subject(s)
Hippocampus/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Humans
6.
Epilepsy Behav Rep ; 12: 100346, 2019.
Article in English | MEDLINE | ID: mdl-31799509

ABSTRACT

We report a case of a 52-year-old man with drug-resistant temporal lobe epilepsy, with post-ictal violent aggressive behaviors. Postictal violent outbursts would occur 3-4 times per year following clusters of seizures or generalized tonic-clonic convulsions. The violent outbursts were traumatizing for his family, and lead to multiple emergency department presentations as well as conflicts with police over the course of nine years. After initiation of pindolol the patient has had no episodes of violent behavior in two years despite experiencing the same frequency and severity of seizures as before pindolol. The abrupt cessation of postictal violent outbursts after introduction of pindolol in this case provides a novel management option for the treatment of postictal violence in patients with drug-resistant epilepsy and supports the importance of the beta adrenergic and potentially serotonergic systems in postictal violent behavior.

7.
Epilepsia Open ; 4(4): 544-554, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31819910

ABSTRACT

OBJECTIVE: Hippocampal sclerosis (HS) is the most common pathology and best predictor of surgical outcome for medically refractory patients with temporal lobe epilepsy (TLE). Current clinical MRI methods can detect HS, but subfield pathology is poorly characterized, limiting accurate prediction of seizure-free outcomes after surgery. Diffusion tensor imaging (DTI) can probe regional microstructural changes associated with focal hippocampal pathology, but is typically limited by low-resolution whole-brain acquisitions. METHODS: High-resolution (1 × 1 × 1 mm3) DTI, T1, and quantitative T2 of the hippocampus was acquired in 18 preoperative TLE patients and 19 healthy controls. Diffusion images were qualitatively assessed for loss of internal architecture, and whole-hippocampus diffusion, volume, and quantitative T2 were compared across groups. Regional hippocampal diffusion abnormalities were examined in all subjects and compared to histology in four subjects who underwent anterior temporal lobectomy. RESULTS: High-resolution mean diffusion-weighted images enabled visualization of internal hippocampal architecture, used to visually identify HS with 86% specificity and 93% sensitivity. Mean diffusivity (MD) elevations were regionally heterogenous within the hippocampus and varied across TLE patients. The spatial location of diffusion abnormalities corresponded with the location of focal subfield neuron loss, gliosis, and reduced myelin staining abnormalities identified with postsurgical histology in four subjects who underwent anterior temporal lobectomy. Whole-hippocampus MD and T2 relaxation times were higher, and fractional anisotropy (FA) and volumes were lower in TLE patients relative to controls. Left hippocampus MD correlated with verbal memory in the TLE group. SIGNIFICANCE: Visualization of internal architecture and focal diffusion abnormalities on high-resolution diffusion imaging suggests potential clinical utility of diffusion imaging in TLE and may have significant implications for surgical planning and prediction of seizure-free outcomes in individual patients.

8.
J Neurosurg ; : 1-10, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31419798

ABSTRACT

OBJECTIVE: Diffusion tensor imaging (DTI) tractography is commonly used in neurosurgical practice but is largely limited to the preoperative setting. This is due primarily to image degradation caused by susceptibility artifact when conventional single-shot (SS) echo-planar imaging (EPI) DTI (SS-DTI) is acquired for open cranial, surgical position intraoperative DTI (iDTI). Readout-segmented (RS) EPI DTI (RS-DTI) has been reported to reduce such artifact but has not yet been evaluated in the intraoperative MRI (iMRI) environment. The authors evaluated the performance of RS versus SS EPI for DTI of the human brain in the iMRI setting. METHODS: Pre- and intraoperative 3-T 3D T1-weighted and 2D multislice RS-iDTI (called RESOLVE [readout segmentation of long variable echo-trains] on the Siemens platform) and SS-iDTI images were acquired in 22 adult patients undergoing intraaxial iMRI resections for suspected low-grade glioma (14; 64%), high-grade glioma (7; 32%), or focal cortical dysplasia. Regional susceptibility artifact, anatomical deviation relative to T1-weighted imaging, and tractographic output for surgically relevant tracts were compared between iDTI sequences as well as the intraoperative tract shifts from preoperative DTI. RESULTS: RS-iDTI resulted in qualitatively less regional susceptibility artifact (resection cavity, orbitofrontal and anterior temporal cortices) and mean anatomical deviation in regions most prone to susceptibility artifact (RS-iDTI 2.7 ± 0.2 vs SS-iDTI 7.5 ± 0.4 mm) compared to SS-iDTI. Although tract reconstruction success did not significantly differ by DTI method, susceptibility artifact-related tractography failure (of at least 1 surgically relevant tract) occurred for SS-iDTI in 8/22 (36%) patients, and in 5 of these 8 patients RS-iDTI permitted successful reconstruction. Among cases with successful tractography for both sequences, maximal intersequence differences were substantial (mean 9.5 ± 5.7 mm, range -27.1 to 18.7 mm). CONCLUSIONS: RS EPI enables higher quality and more accurate DTI for surgically relevant tractography of major white matter tracts in intraoperative, open cranium neurosurgical applications at 3 T.

9.
Neuroimage ; 182: 479-487, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29395905

ABSTRACT

The human hippocampus is a key target of many imaging studies given its capacity for neurogenesis, role in long term potentiation and memory, and nearly ubiquitous involvement in neurological and psychiatric conditions. Diffusion tensor imaging (DTI) has detected microstructural abnormalities of the human hippocampus associated with various disorders, but acquisitions have typically been limited to low spatial resolution protocols designed for whole brain (e.g. > 2 mm isotropic, >8 mm3 voxels), limiting regional specificity and worsening partial volume effects. The purpose here was to develop a simple DTI protocol using readily available standard single-shot EPI at 3T, capable of yielding much higher spatial resolution images (1 x 1 x 1 mm3) of the human hippocampus in a 'clinically feasible' scan time of ~6 min. A thin slab of twenty 1 mm slices oriented along the long axis of the hippocampus enabled efficient coverage and a shorter repetition time, allowing more diffusion weighted images (DWIs) per slice per unit time. In combination with this strategy, a low b value of 500 s/mm2 was chosen to help overcome the very low SNR of a 1 x 1 x 1 mm3 EPI acquisition. 1 mm isotropic mean DWIs (averaged over 120-128 DWIs) showed excellent detail of the hippocampal architecture (e.g. morphology and digitations, sub-regions, stratum lacunosum moleculare - SLM) that was not readily visible on 2 mm isotropic diffusion images. Diffusion parameters within the hippocampus were consistent across subjects and fairly homogenous across sub-regions of the hippocampus (with the exception of the SLM and tail). However, it is expected that DTI parameters will be sensitive to microstructural changes associated with a number of clinical disorders (e.g. epilepsy, dementia) and that this practical, translatable approach for high resolution acquisition will facilitate localized detection of hippocampal pathology.


Subject(s)
Diffusion Tensor Imaging/methods , Hippocampus/diagnostic imaging , Image Processing, Computer-Assisted/methods , Adult , Humans
10.
Epilepsy Res ; 140: 128-137, 2018 02.
Article in English | MEDLINE | ID: mdl-29331847

ABSTRACT

OBJECTIVES: 1) Characterize the evolution of microstructural changes in the contralateral, non-operated hippocampus-using longitudinal diffusion tensor imaging (DTI)-following surgery for temporal lobe epilepsy (TLE). 2) Characterize the downstream extra-hippocampal volumetric changes of the fornix and mammillary bodies after TLE surgery. 3) Examine the relationship between these measures and seizure/cognitive outcome. METHODS: Serial structural and DTI brain MRI scans were collected in 25 TLE patients pre- and post-surgery (anterior temporal lobectomy, ATL - 13; selective amygdalohippocampectomy, SelAH - 12) and in 12 healthy controls. Contralateral hippocampal fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) were computed with manual hippocampal tracings as volumes of interest following co-registration to anatomical images. Fornix and mammillary body volumetry was performed by manual segmentation. RESULTS: After surgery, the non-resected hippocampus showed significant postoperative decline in FA (p = 0.0001), with increase of MD (p = 0.01) and RD (p = 0.0001). In contrast to the timing of our previously reported volume changes where atrophy is observed in the first week, diffusion changes occurred late, taking 1-3 years to develop and are not significant at one week after surgery. Diffusion changes are accompanied by delayed limbic circuit volume loss in the mammillary bodies (35%; p < 0.0001) and fornix (24%; p < 0.0001) compared to baseline. There was no correlation between postoperative diffusion or structural changes and memory score nor did the degree of postoperative change in hippocampal DTI parameters, mammillary body volume or fornix volume vary significantly based on seizure outcome. SIGNIFICANCE: Differences observed in the timing of postoperative volume (first week) and FA/MD (one year) changes would suggest that early contralateral hippocampal atrophy is not secondary to fluid shifts (dehydration) while the late DTI changes suggest ongoing microstructural changes extending beyond the early postoperative period. Postoperative hippocampal diffusion changes are accompanied by delayed mammillary body and fornix volume loss which did not differ when stratified by seizure outcome nor was correlated with degree of hippocampal diffusion change. Finally, we did not identify any significant correlation between postoperative diffusion parameter change and memory performance.


Subject(s)
Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/surgery , Hippocampus/diagnostic imaging , Adult , Anterior Temporal Lobectomy , Cognition , Diffusion Tensor Imaging , Drug Resistant Epilepsy/psychology , Epilepsy, Temporal Lobe/psychology , Female , Fornix, Brain/diagnostic imaging , Fornix, Brain/pathology , Hippocampus/pathology , Hippocampus/surgery , Humans , Longitudinal Studies , Male , Mammillary Bodies/diagnostic imaging , Mammillary Bodies/pathology , Middle Aged , Organ Size , Treatment Outcome , Young Adult
11.
Neuroimage ; 157: 219-232, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28587896

ABSTRACT

BACKGROUND: Recent findings have demonstrated that hippocampal subfields can be selectively affected in different disease states, which has led to efforts to segment the human hippocampus with in vivo magnetic resonance imaging (MRI). However, no studies have examined the histological accuracy of subfield segmentation protocols. The presence of MRI-visible anatomical landmarks with known correspondence to histology represents a fundamental prerequisite for in vivo hippocampal subfield segmentation. In the present study, we aimed to: 1) develop a novel method for hippocampal body segmentation, based on two MRI-visible anatomical landmarks (stratum lacunosum moleculare [SLM] & dentate gyrus [DG]), and assess its accuracy in comparison to the gold standard direct histological measurements; 2) quantify the accuracy of two published segmentation strategies in comparison to the histological gold standard; and 3) apply the novel method to ex vivo MRI and correlate the results with histology. METHODS: Ultra-high resolution ex vivo MRI was performed on six whole cadaveric hippocampal specimens, which were then divided into 22 blocks and histologically processed. The hippocampal bodies were segmented into subfields based on histological criteria and subfield boundaries and areas were directly measured. A novel method was developed using mean percentage of the total SLM distance to define subfield boundaries. Boundary distances and subfield areas on histology were then determined using the novel method and compared to the gold standard histological measurements. The novel method was then used to determine ex vivo MRI measures of subfield boundaries and areas, which were compared to histological measurements. RESULTS: For direct histological measurements, the mean percentages of total SLM distance were: Subiculum/CA1 = 9.7%, CA1/CA2 = 78.4%, CA2/CA3 = 97.5%. When applied to histology, the novel method provided accurate measures for CA1/CA2 (ICC = 0.93) and CA2/CA3 (ICC = 0.97) boundaries, but not for the Subiculum/CA1 (ICC = -0.04) boundary. Accuracy was poorer using previous techniques for CA1/CA2 (maximum ICC = 0.85) and CA2/CA3 (maximum ICC = 0.88), with the previously reported techniques also performing poorly in defining the Subiculum/CA1 boundary (maximum ICC = 0.00). Ex vivo MRI measurements using the novel method were linearly related to direct measurements of SLM length (r2 = 0.58), CA1/CA2 boundary (r2 = 0.39) and CA2/CA3 boundary (r2 = 0.47), but not for Subiculum/CA1 boundary (r2 = 0.01). Subfield areas measured with the novel method on histology and ex vivo MRI were linearly related to gold standard histological measures for CA1, CA2, and CA3/CA4/DG. CONCLUSIONS: In this initial proof of concept study, we used ex vivo MRI and histology of cadaveric hippocampi to develop a novel segmentation protocol for the hippocampal body. The novel method utilized two anatomical landmarks, SLM & DG, and provided accurate measurements of CA1, CA2, and CA3/CA4/DG subfields in comparison to the gold standard histological measurements. The relationships demonstrated between histology and ex vivo MRI supports the potential feasibility of applying this method to in vivo MRI studies.


Subject(s)
Hippocampus/anatomy & histology , Histological Techniques/methods , Magnetic Resonance Imaging/methods , Aged , Aged, 80 and over , Clinical Protocols , Hippocampus/diagnostic imaging , Hippocampus/pathology , Humans , Middle Aged , Reproducibility of Results
12.
J Neuropathol Exp Neurol ; 76(3): 206-215, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28395090

ABSTRACT

Immune mechanisms have been increasingly recognized in the pathogenesis of hippocampal sclerosis (HS), but infiltration of cytotoxic T-cells and its pathological significance in patients with HS has not been explored. We examined 30 cases of surgically resected hippocampi, including 16 International League Against Epilepsy (ILAE) type 1, 9 ILAE type 2, 1 ILAE type 3 HS, and 4 ILAE No-HS, as well as 6 autopsy No-HS hippocampi. The HS hippocampi showed sparse to scattered CD8-positive T-cells, rare CD4-positive T-cells, and a modest increase in CD68-positive microglia/macrophages, which were significantly more numerous than those in the No-HS controls. The infiltration of CD8-positive T-cells was significantly greater in the CA1 subfield than other subfields of type 1 and type 2 HS. The numbers of CD8-positive T-cells positively correlated with those of CD4-positive T-cells; there was a lower ratio of CD4/CD8-positive T-cells. There were positive correlations between these cells and scores of neuronal loss but no significant correlation between the infiltration of these cells and epilepsy disease duration or age of epilepsy onset. These findings suggest that an autoimmune process may be involved in the pathogenesis of HS and infiltration of immune cells, particularly CD8-positive cytotoxic T-cells, may contribute to neuronal loss in HS.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Epilepsy/metabolism , Hippocampus/metabolism , Immunity, Cellular/physiology , Neurons/metabolism , Adolescent , Adult , Aged , Child, Preschool , Epilepsy/pathology , Female , Hippocampus/pathology , Humans , Male , Middle Aged , Neurons/pathology , Retrospective Studies , Sclerosis/metabolism , Sclerosis/pathology , Young Adult
13.
J Neurol Sci ; 367: 305-7, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27423608

ABSTRACT

Rheumatoid arthritis (RA) and multiple sclerosis (MS) are both autoimmune diseases that share similar pathogenesis, but the development of MS in RA patients without the treatment of anti-tumor necrosis factor-alpha is rarely reported, which might be attributed to the use of other medications with potential immunosuppressive effects in the treatment of RA. Since MS can be clinically silent and autopsy examination of the central nervous system in RA patients is rarely described, the association of MS with RA may be possibly under-recognized. We report an autopsy case revealing multifocal inflammatory demyelination in a RA patient who had a prolonged use of methotrexate and hydroxychloroquine resulting in hydroxychloroquine-induced myopathies and heart failure. The neuropathological features of this case are consistent with MS, although there are some altered inflammatory demyelinating features such as relatively smaller lesions and less infiltration of inflammatory cells, particularly T-cells. Our present case, in combination with literature review, suggests that the RA treatment especially with hydroxychloroquine and methotrexate is likely to alter the characteristics of inflammatory demyelination and disease course.


Subject(s)
Antirheumatic Agents/adverse effects , Arthritis, Rheumatoid/complications , Demyelinating Diseases/etiology , Hydroxychloroquine/adverse effects , Methotrexate/adverse effects , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Brain/diagnostic imaging , Brain/pathology , Demyelinating Diseases/diagnostic imaging , Demyelinating Diseases/pathology , Fatal Outcome , Female , Humans , Hydroxychloroquine/therapeutic use , Methotrexate/therapeutic use , Middle Aged
14.
Epilepsy Res ; 125: 62-71, 2016 09.
Article in English | MEDLINE | ID: mdl-27394376

ABSTRACT

OBJECTIVE: Determine the extent and time course of volumetric changes in the contralateral hippocampus following surgery for medically refractory temporal lobe epilepsy (TLE). METHODS: Serial T1-weighted MRI brain scans were obtained in 26 TLE patients pre- and post-temporal lobe epilepsy surgery as well as in 12 control subjects of similar age. Patients underwent either anterior temporal lobectomy (ATL) or selective amygdalohippocampectomy (SAH). Blinded, manual hippocampal volumetry (head, body, and tail) was performed in two groups: 1) two scan group [ATL (n=6); SAH (n=10)], imaged pre-surgery and on average at 5.4 years post-surgery; and 2) longitudinal group [ATL (n=8); SAH (n=2)] imaged pre-surgery and on post-operative day 1, 2, 3, 6, 60, 120 and a delayed time point (average 2.4 years). RESULTS: In the two scan group, there was atrophy by 12% of the unresected contralateral hippocampus (p<0.001), with atrophy being most pronounced (27%) in the hippocampal body (p<0.001) with no significant differences seen for the hippocampal head or tail. In the longitudinal group, significant atrophy was also observed for the whole hippocampus and the body with atrophy seen as early as post-operative day #1 which progressed significantly over the first post-operative week (1.3%/day and 3.0%./day, respectively) before stabilizing over the long-term to a 13% reduction in total volume. There was no significant difference in atrophy compared by surgical approach (ATL vs. SAH; p=0.94) or side (p=0.31); however, atrophy was significantly more pronounced in patients with ongoing post-operative seizures (hippocampal body, p=0.019; whole hippocampus, p=0.048). There were no detectable post-operative neuropsychological deficits attributable to contralateral hippocampal atrophy. SIGNIFICANCE: Significant contralateral hippocampal atrophy occurs following TLE surgery, which begins immediately and progresses over the first post-operative week. The observation that seizure free patients had significantly less atrophy of the contralateral hippocampus after surgery suggests the possibility of an early post-operative imaging marker to predict surgical outcome.


Subject(s)
Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/surgery , Hippocampus/diagnostic imaging , Postoperative Complications/diagnostic imaging , Adult , Anterior Temporal Lobectomy , Atrophy/diagnostic imaging , Atrophy/etiology , Atrophy/physiopathology , Atrophy/psychology , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/psychology , Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/psychology , Female , Functional Laterality , Hippocampus/physiopathology , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Organ Size , Postoperative Complications/physiopathology , Postoperative Complications/psychology , Reproducibility of Results , Treatment Outcome , Young Adult
15.
Epilepsia ; 56(12): 1992-2002, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26530395

ABSTRACT

OBJECTIVE: Although altered large-scale brain network organization in patients with temporal lobe epilepsy (TLE) has been shown using morphologic measurements such as cortical thickness, these studies, have not included critical subcortical structures (such as hippocampus and amygdala) and have had relatively small sample sizes. Here, we investigated differences in topological organization of the brain volumetric networks between patients with right TLE (RTLE) and left TLE (LTLE) with unilateral hippocampal atrophy. METHODS: We performed a cross-sectional analysis of 86 LTLE patients, 70 RTLE patients, and 116 controls. RTLE and LTLE groups were balanced for gender (p = 0.64), seizure frequency (Mann-Whitney U test, p = 0.94), age (p = 0.39), age of seizure onset (p = 0.21), and duration of disease (p = 0.69). Brain networks were constructed by thresholding correlation matrices of volumes from 80 cortical/subcortical regions (parcellated with Freesurfer v5.3 https://surfer.nmr.mgh.harvard.edu/) that were then analyzed using graph theoretical approaches. RESULTS: We identified reduced cortical/subcortical connectivity including bilateral hippocampus in both TLE groups, with the most significant interregional correlation increases occurring within the limbic system in LTLE and contralateral hemisphere in RTLE. Both TLE groups demonstrated less optimal topological organization, with decreased global efficiency and increased local efficiency and clustering coefficient. LTLE also displayed a more pronounced network disruption. Contrary to controls, hub nodes in both TLE groups were not distributed across whole brain, but rather found primarily in the paralimbic/limbic and temporal association cortices. Regions with increased centrality were concentrated in occipital lobes for LTLE and contralateral limbic/temporal areas for RTLE. SIGNIFICANCE: These findings provide first evidence of altered topological organization of the whole brain volumetric network in TLE, with disruption of the coordinated patterns of cortical/subcortical morphology.


Subject(s)
Epilepsy, Temporal Lobe/physiopathology , Brain Mapping , Case-Control Studies , Cerebral Cortex/physiopathology , Cross-Sectional Studies , Female , Hippocampus/physiopathology , Humans , Image Processing, Computer-Assisted , Limbic System/physiopathology , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/physiopathology , Occipital Lobe/physiopathology
16.
Epilepsy Behav ; 50: 162-70, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26159729

ABSTRACT

Recent years have witnessed a paradigm shift in the study and conceptualization of epilepsy, which is increasingly understood as a network-level disorder. An emblematic case is temporal lobe epilepsy (TLE), the most common drug-resistant epilepsy that is electroclinically defined as a focal epilepsy and pathologically associated with hippocampal sclerosis. In this review, we will summarize histopathological, electrophysiological, and neuroimaging evidence supporting the concept that the substrate of TLE is not limited to the hippocampus alone, but rather is broadly distributed across multiple brain regions and interconnecting white matter pathways. We will introduce basic concepts of graph theory, a formalism to quantify topological properties of complex systems that has recently been widely applied to study networks derived from brain imaging and electrophysiology. We will discuss converging graph theoretical evidence indicating that networks in TLE show marked shifts in their overall topology, providing insight into the neurobiology of TLE as a network-level disorder. Our review will conclude by discussing methodological challenges and future clinical applications of this powerful analytical approach.


Subject(s)
Brain/pathology , Epilepsy, Temporal Lobe/diagnosis , Models, Theoretical , Nerve Net/pathology , Animals , Brain/physiopathology , Epilepsy/diagnosis , Epilepsy/physiopathology , Epilepsy, Temporal Lobe/physiopathology , Hippocampus/pathology , Humans , Nerve Net/physiopathology , Neuroimaging/methods
17.
Epilepsia ; 56(1): 125-32, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25545559

ABSTRACT

OBJECTIVE: To evaluate white matter (WM) integrity of distinct groups of patients with antiepileptic drug (AED)-resistant localization-related epilepsies. METHODS: We used diffusion tensor imaging (DTI) fiber-tractography and voxel-based morphometry (VBM) to investigate differences of WM micro- and macrostructural integrity in patients with different drug-resistant localization-related epilepsies: 17 with temporal lobe epilepsy with magnetic resonance imaging (MRI) signs of hippocampal sclerosis (TLE-HS), 17 with TLE and normal MRI (TLE-NL), 14 with frontal lobe epilepsy and subtle MRI signs of focal cortical dysplasia (FLE-FCD), and 112 healthy controls. We performed fiber-tractography using a semiautomatic deterministic method to yield average fractional anisotropy (FA), axial (AD), and radial (RD) diffusivity ipsilateral and contralateral to the epileptogenic zone of the following tracts based on their functional and anatomic relevance: body of fornix (BoF), body of cingulum (BoC), inferior frontal occipital (IFO), and uncinate fasciculi (UF). In addition, we performed VBM of the WM maps to assess macrostructural integrity differences among groups. RESULTS: TLE-HS had ipsilateral and contralateral decreased FA and increased RD for all tracts. VBM showed WM alterations mainly in the ipsilateral parahippocampal region and contralateral superior temporal gyrus. FLE-FCD showed bilateral FA decreases only in the BoC and ipsilateral RD increases also in the BoC. VBM showed WM reduction mainly in the ipsilateral precuneus and posterior and anterior cingulum. No significant WM alterations were found in the TLE-NL in DTI or VBM analysis. SIGNIFICANCE: WM abnormalities differ in distinct AED-resistant localization-related epilepsies. The diverse distribution of the WM damage in these patients suggests that the localization of the epileptic networks may play a role in the WM burden. However, the distinct degree of this damage, more accentuated in TLE-HS, also suggests that the underlying cause of the epilepsy is probably an additional factor to explain this WM damage.


Subject(s)
Epilepsy, Frontal Lobe/pathology , Epilepsy, Temporal Lobe/pathology , Hippocampus/pathology , Malformations of Cortical Development/pathology , White Matter/pathology , Adult , Anticonvulsants/therapeutic use , Brain/pathology , Case-Control Studies , Diffusion Tensor Imaging , Drug Resistance , Epilepsy, Frontal Lobe/complications , Epilepsy, Frontal Lobe/drug therapy , Epilepsy, Temporal Lobe/drug therapy , Female , Fornix, Brain/pathology , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Malformations of Cortical Development/complications , Middle Aged , Organ Size , Sclerosis , Young Adult
18.
Epilepsy Res ; 108(9): 1533-42, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25260933

ABSTRACT

PURPOSE: Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique that can characterize white matter (WM) architecture and microstructure. DTI has demonstrated extensive WM changes in patients with several epileptic syndromes, but few studies have focused on patients with malformations of cortical development (MCD). Our aim was to investigate the quantitative diffusion properties of the corpus callosum (CC), a major commissural bundle critical in inter-hemispheric connectivity, in a large group of patients with MCD. METHODS: Thirty-two MCD patients and 32 age and sex-matched control subjects were evaluated with DTI at 3.0 T. We analyzed the three major subdivisions of the CC (genu, body, and splenium) with deterministic tractography to yield fractional anisotropy (FA), mean diffusivity (MD), parallel diffusivity (λ||) and perpendicular diffusivity (λ⊥). We further assessed the CC with region of interest (ROI)-based analyses and evaluated different subgroups of MCD (polymicrogyria/schizencephaly, heterotopia, and cortical dysplasia). Partial correlations between diffusion changes and clinical parameters (epilepsy duration and age at disease onset) were also queried. RESULTS: There were significant reductions of FA, accompanied by increases in MD and λ⊥ in all segments of the CC in the patients group with both analytical methods. The absolute differences in FA were greater on ROI-analyses. There were no significant differences between the MCD subgroups, and no correlations between clinical parameters of epilepsy and FA. CONCLUSIONS: Our study indicates DTI abnormalities consistent with microstructural changes in the corpus callosum of MCD patients. The findings support the idea that patients with epilepsy secondary to cortical malformations present widespread WM changes that extend beyond the macroscopic MRI-visible lesions.


Subject(s)
Corpus Callosum/pathology , Diffusion Tensor Imaging , Epilepsy/diagnosis , Malformations of Cortical Development/diagnosis , Adolescent , Adult , Anisotropy , Child , Epilepsy/complications , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Malformations of Cortical Development/complications , Middle Aged , Multivariate Analysis , Young Adult
19.
Epilepsy Res ; 108(8): 1279-85, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25107686

ABSTRACT

BACKGROUND: The utility of MRI-based hippocampal subfield volumetry as a diagnostic test for hippocampal sclerosis (HS) is based on the hypothesis that specific hippocampal subfields are differentially affected in HS. While qualitative studies suggest selective involvement of certain hippocampal subfields in this condition, whether quantifiable differences exist remains unclear. Neuronal density measurement is the most widely used technique for measuring subfield pathological change in HS. Therefore, a systematic review and meta-analysis of studies reporting neuronal densities in temporal lobe epilepsy was performed in order to quantify subfield pathology in hippocampal sclerosis. METHODS: Studies were identified by searching the Medline and Embase databases using the search terms: cell count, hippocampus, and epilepsy. Of the 192 studies identified by the literature search, seven met all inclusion and exclusion criteria. Random effects meta-analyses were performed, comparing: (i) neuronal densities in control (n=121) versus HS (n=371) groups for subfields CA1-4; and (ii) amount of neuronal loss in HS between subfields CA1-4. RESULTS: Statistically significant neuronal loss was observed comparing HS to control groups in all subfields CA1-4 (p<0.001 for all comparisons). Significantly greater neuronal loss was demonstrated in HS comparing CA1 versus CA2 (p<0.001), CA3 (p=0.005), and CA4 (p=0.003). Greater pyramidal cell loss was also demonstrated in CA3 relative to the CA2 subfield (p=0.003). No significant differences were identified comparing CA2 and CA4 (p=0.39); or comparing CA3 and CA4 (p=0.64). CONCLUSIONS: HS is characterized by pathology in all hippocampal subfields. Quantifiable differences exist in the involvement of specific hippocampal subfields in HS. Neuronal loss is greatest in CA1, intermediate in CA3 and CA4, and least in CA2. Further studies are required to determine if this pattern can be detected using in vivo MRI.


Subject(s)
Epilepsy/pathology , Hippocampus/pathology , Neurons/pathology , Cell Count/methods , Epilepsy/etiology , Humans , Sclerosis/complications , Sclerosis/pathology
20.
Front Aging Neurosci ; 6: 142, 2014.
Article in English | MEDLINE | ID: mdl-25071551

ABSTRACT

The limbic system is presumed to have a central role in cognitive performance, in particular memory. The purpose of this study was to investigate the relationship between limbic white matter microstructure and neuropsychological function in temporal-lobe epilepsy (TLE) patients using diffusion tensor imaging (DTI). Twenty-one adult TLE patients, including 7 non-lesional (nlTLE) and 14 with unilateral mesial temporal sclerosis (uTLE), were studied with both DTI and hippocampal T2 relaxometry. Correlations were performed between fractional anisotropy (FA) of the bilateral fornix and cingulum, hippocampal T2, neuropsychological tests. Positive correlations were observed in the whole group for the left fornix and processing speed index. In contrast, memory tests did not show significant correlations with DTI findings. Subgroup analysis demonstrated an association between the left fornix and processing speed in nlTLE but not uTLE. No correlations were observed between hippocampal T2 and test scores in either the TLE group as a whole or after subgroup analysis. Our findings suggest that integrity of the left fornix specifically is an important anatomical correlate of cognitive function in TLE patients, in particular patients with nlTLE.

SELECTION OF CITATIONS
SEARCH DETAIL
...