Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Circ Res ; 132(6): 723-740, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36799218

ABSTRACT

BACKGROUND: A recent study suggests that systemic hypoxemia in adult male mice can induce cardiac myocytes to proliferate. The goal of the present experiments was to confirm these results, provide new insights on the mechanisms that induce adult cardiomyocyte cell cycle reentry, and to determine if hypoxemia also induces cardiomyocyte proliferation in female mice. METHODS: EdU-containing mini pumps were implanted in 3-month-old, male and female C57BL/6 mice. Mice were placed in a hypoxia chamber, and the oxygen was lowered by 1% every day for 14 days to reach 7% oxygen. The animals remained in 7% oxygen for 2 weeks before terminal studies. Myocyte proliferation was also studied with a mosaic analysis with double markers mouse model. RESULTS: Hypoxia induced cardiac hypertrophy in both left ventricular (LV) and right ventricular (RV) myocytes, with LV myocytes lengthening and RV myocytes widening and lengthening. Hypoxia induced an increase (0.01±0.01% in normoxia to 0.11±0.09% in hypoxia) in the number of EdU+ RV cardiomyocytes, with no effect on LV myocytes in male C57BL/6 mice. Similar results were observed in female mice. Furthermore, in mosaic analysis with double markers mice, hypoxia induced a significant increase in RV myocyte proliferation (0.03±0.03% in normoxia to 0.32±0.15% in hypoxia of RFP+ myocytes), with no significant change in LV myocyte proliferation. RNA sequencing showed upregulation of mitotic cell cycle genes and a downregulation of Cullin genes, which promote the G1 to S phase transition in hypoxic mice. There was significant proliferation of nonmyocytes and mild cardiac fibrosis in hypoxic mice that did not disrupt cardiac function. Male and female mice exhibited similar gene expression following hypoxia. CONCLUSIONS: Systemic hypoxia induces a global hypertrophic stress response that was associated with increased RV proliferation, and while LV myocytes did not show increased proliferation, our results minimally confirm previous reports that hypoxia can induce cardiomyocyte cell cycle activity in vivo.


Subject(s)
Hypoxia , Myocytes, Cardiac , Mice , Male , Female , Animals , Myocytes, Cardiac/metabolism , Mice, Inbred C57BL , Hypoxia/complications , Hypoxia/metabolism , Cell Proliferation , Oxygen/metabolism , Hypertrophy/complications , Hypertrophy/metabolism
2.
Cardiovasc Res ; 117(1): 149-161, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32053184

ABSTRACT

AIM: In cardiomyocytes, transverse tubules (T-tubules) associate with the sarcoplasmic reticulum (SR), forming junctional membrane complexes (JMCs) where L-type calcium channels (LTCCs) are juxtaposed to Ryanodine receptors (RyR). Junctophilin-2 (JPH2) supports the assembly of JMCs by tethering T-tubules to the SR membrane. T-tubule remodelling in cardiac diseases is associated with downregulation of JPH2 expression suggesting that JPH2 plays a crucial role in T-tubule stability. Furthermore, increasing evidence indicate that JPH2 might additionally act as a modulator of calcium signalling by directly regulating RyR and LTCCs. This study aimed at determining whether JPH2 overexpression restores normal T-tubule structure and LTCC function in cultured cardiomyocytes. METHODS AND RESULTS: Rat ventricular myocytes kept in culture for 4 days showed extensive T-tubule remodelling with impaired JPH2 localization and relocation of the scaffolding protein Caveolin3 (Cav3) from the T-tubules to the outer membrane. Overexpression of JPH2 restored T-tubule structure and Cav3 relocation. Depletion of membrane cholesterol by chronic treatment with methyl-ß-cyclodextrin (MßCD) countered the stabilizing effect of JPH2 overexpression on T-tubules and Cav3. Super-resolution scanning patch-clamp showed that JPH2 overexpression greatly increased the number of functional LTCCs at the plasma membrane. Treatment with MßCD reduced LTCC open probability and activity. Proximity ligation assays showed that MßCD did not affect JPH2 interaction with RyR and the pore-forming LTCC subunit Cav1.2, but strongly impaired JPH2 association with Cav3 and the accessory LTCC subunit Cavß2. CONCLUSIONS: JPH2 promotes T-tubule structural stability and recruits functional LTCCs to the membrane, most likely by directly binding to the channel. Cholesterol is involved in the binding of JPH2 to T-tubules as well as in the modulation of LTCC activity. We propose a model where cholesterol and Cav3 support the assembly of lipid rafts which provide an anchor for JPH2 to form JMCs and a platform for signalling complexes to regulate LTCC activity.


Subject(s)
Calcium Channels, L-Type/metabolism , Membrane Microdomains/metabolism , Membrane Proteins/metabolism , Myocytes, Cardiac/metabolism , Animals , Calcium/metabolism , Calcium Signaling , Caveolin 3/metabolism , Cells, Cultured , Cholesterol/metabolism , Male , Protein Binding , Protein Transport , Rats, Sprague-Dawley
3.
Circ Res ; 128(1): 92-114, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33092464

ABSTRACT

RATIONALE: Ca2+-induced Ca2+ release (CICR) in normal hearts requires close approximation of L-type calcium channels (LTCCs) within the transverse tubules (T-tubules) and RyR (ryanodine receptors) within the junctional sarcoplasmic reticulum. CICR is disrupted in cardiac hypertrophy and heart failure, which is associated with loss of T-tubules and disruption of cardiac dyads. In these conditions, LTCCs are redistributed from the T-tubules to disrupt CICR. The molecular mechanism responsible for LTCCs recruitment to and from the T-tubules is not well known. JPH (junctophilin) 2 enables close association between T-tubules and the junctional sarcoplasmic reticulum to ensure efficient CICR. JPH2 has a so-called joining region that is located near domains that interact with T-tubular plasma membrane, where LTCCs are housed. The idea that this joining region directly interacts with LTCCs and contributes to LTCC recruitment to T-tubules is unknown. OBJECTIVE: To determine if the joining region in JPH2 recruits LTCCs to T-tubules through direct molecular interaction in cardiomyocytes to enable efficient CICR. METHODS AND RESULTS: Modified abundance of JPH2 and redistribution of LTCC were studied in left ventricular hypertrophy in vivo and in cultured adult feline and rat ventricular myocytes. Protein-protein interaction studies showed that the joining region in JPH2 interacts with LTCC-α1C subunit and causes LTCCs distribution to the dyads, where they colocalize with RyRs. A JPH2 with induced mutations in the joining region (mutPG1JPH2) caused T-tubule remodeling and dyad loss, showing that an interaction between LTCC and JPH2 is crucial for T-tubule stabilization. mutPG1JPH2 caused asynchronous Ca2+-release with impaired excitation-contraction coupling after ß-adrenergic stimulation. The disturbed Ca2+ regulation in mutPG1JPH2 overexpressing myocytes caused calcium/calmodulin-dependent kinase II activation and altered myocyte bioenergetics. CONCLUSIONS: The interaction between LTCC and the joining region in JPH2 facilitates dyad assembly and maintains normal CICR in cardiomyocytes.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium Signaling , Calcium/metabolism , Hypertrophy, Left Ventricular/metabolism , Membrane Proteins/metabolism , Muscle Proteins/metabolism , Myocytes, Cardiac/metabolism , Animals , Calcium Channels, L-Type/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cats , Cells, Cultured , Disease Models, Animal , Excitation Contraction Coupling , Humans , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Kinetics , Male , Membrane Proteins/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Muscle Proteins/genetics , Mutation , Myocytes, Cardiac/pathology , Organelle Biogenesis , Protein Binding , Protein Interaction Domains and Motifs , Rats, Sprague-Dawley , Ryanodine Receptor Calcium Release Channel
4.
FASEB J ; 34(4): 5642-5657, 2020 04.
Article in English | MEDLINE | ID: mdl-32100368

ABSTRACT

The adult mammalian heart has a limited regenerative capacity. Therefore, identification of endogenous cells and mechanisms that contribute to cardiac regeneration is essential for the development of targeted therapies. The side population (SP) phenotype has been used to enrich for stem cells throughout the body; however, SP cells isolated from the heart have been studied exclusively in cell culture or after transplantation, limiting our understanding of their function in vivo. We generated a new Abcg2-driven lineage-tracing mouse model with efficient labeling of SP cells. Labeled SP cells give rise to terminally differentiated cells in bone marrow and intestines. In the heart, labeled SP cells give rise to lineage-traced cardiomyocytes under homeostatic conditions with an increase in this contribution following cardiac injury. Instead of differentiating into cardiomyocytes like proposed cardiac progenitor cells, cardiac SP cells fuse with preexisting cardiomyocytes to stimulate cardiomyocyte cell cycle reentry. Our study is the first to show that fusion between cardiomyocytes and non-cardiomyocytes, identified by the SP phenotype, contribute to endogenous cardiac regeneration by triggering cardiomyocyte cell cycle reentry in the adult mammalian heart.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/physiology , Cell Differentiation , Myocardial Ischemia/pathology , Myocytes, Cardiac/cytology , Regeneration , Side-Population Cells/cytology , Animals , Bone Marrow Transplantation , Cell Lineage , Cells, Cultured , Female , Male , Mice , Mice, Knockout , Myocardial Ischemia/therapy , Myocytes, Cardiac/metabolism , Side-Population Cells/metabolism
5.
J Mol Cell Cardiol ; 123: 108-117, 2018 10.
Article in English | MEDLINE | ID: mdl-30171848

ABSTRACT

Increased G protein-coupled receptor kinase (GRK)2 is central to heart failure (HF) pathogenesis, via desensitization of ß-adrenergic receptors and loss of contractile reserve. Since GRK2 has been shown to compromise fatty acid (FA) oxidation, this kinase may link metabolic and contractile defects in HF. The aim of this study was to investigate the mechanistic role of GRK2 in FA metabolism and bioenergetics in the heart. For that purpose, we measured FA uptake and cluster of differentiation (CD)36 expression, phosphorylation, and ubiquitination in mice with cardiac-specific overexpression of GRK2 (TgGRK2) or expression of its c-terminus (GRK2 inhibitor- TgßARKct) or in global heterozygous GRK2 knockout (GRK2+/-) mice. Cellular bioenergetics were also measured in isolated cardiomyocytes following adenoviral delivery of exogenous GRK2, ßARKct, or short hairpin GRK2 (shGRK2). Additionally, CD36 expression and phosphorylation were evaluated following transverse aortic constriction (TAC) in wild type (WT) and GRK2+/- mice. Our results show a 33% ±â€¯0.81 reduction in FA uptake rate, accompanied by 51% ±â€¯0.17 lower CD36 protein, and 70% ±â€¯0.23 and 69% ±â€¯0.18 increases in CD36 phosphorylation and ubiquitination, respectively, in the TgGRK2 mice. Moreover, an in vitro kinase assay suggests that GRK2 directly phosphorylates CD36. In isolated cardiomyocytes, GRK2 overexpression induced a 26% ±â€¯2.21 decrease in maximal respiration, which was enhanced (20% ±â€¯4.02-5.14) with inhibition of the kinase. Importantly, in hearts with systolic dysfunction, notable reductions in CD36 mRNA and protein, as well as a significant increase in CD36 phosphorylation were normalized in the GRK2+/- mice post-TAC. Thus, we propose that GRK2 up-regulation in HF is, at least partly, responsible for reduced FA uptake and oxidation and may be a nodal link between metabolic and contractile defects.


Subject(s)
Fatty Acids/metabolism , G-Protein-Coupled Receptor Kinase 2/metabolism , Heart Failure/metabolism , Lipid Metabolism , Animals , Biomarkers , CD36 Antigens/metabolism , Disease Models, Animal , Disease Susceptibility , G-Protein-Coupled Receptor Kinase 2/genetics , Heart Failure/etiology , Heart Failure/physiopathology , Mice , Mice, Knockout , Mice, Transgenic , Myocytes, Cardiac/metabolism , Phosphorylation
6.
J Am Heart Assoc ; 6(10)2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29018025

ABSTRACT

BACKGROUND: Aberrant Ca2+ handling is a prominent feature of heart failure. Elucidation of the molecular mechanisms responsible for aberrant Ca2+ handling is essential for the development of strategies to blunt pathological changes in calcium dynamics. The peptidyl-prolyl cis-trans isomerase peptidyl-prolyl isomerase 1 (Pin1) is a critical mediator of myocardial hypertrophy development and cardiac progenitor cell cycle. However, the influence of Pin1 on calcium cycling regulation has not been explored. On the basis of these findings, the aim of this study is to define Pin1 as a novel modulator of Ca2+ handling, with implications for improving myocardial contractility and potential for ameliorating development of heart failure. METHODS AND RESULTS: Pin1 gene deletion or pharmacological inhibition delays cytosolic Ca2+ decay in isolated cardiomyocytes. Paradoxically, reduced Pin1 activity correlates with increased sarco(endo)plasmic reticulum calcium ATPase (SERCA2a) and Na2+/Ca2+ exchanger 1 protein levels. However, SERCA2a ATPase activity and calcium reuptake were reduced in sarcoplasmic reticulum membranes isolated from Pin1-deficient hearts, suggesting that Pin1 influences SERCA2a function. SERCA2a and Na2+/Ca2+ exchanger 1 associated with Pin1, as revealed by proximity ligation assay in myocardial tissue sections, indicating that regulation of Ca2+ handling within cardiomyocytes is likely influenced through Pin1 interaction with SERCA2a and Na2+/Ca2+ exchanger 1 proteins. CONCLUSIONS: Pin1 serves as a modulator of SERCA2a and Na2+/Ca2+ exchanger 1 Ca2+ handling proteins, with loss of function resulting in impaired cardiomyocyte relaxation, setting the stage for subsequent investigations to assess Pin1 dysregulation and modulation in the progression of heart failure.


Subject(s)
Calcium Signaling , Calcium/metabolism , Heart Failure/enzymology , Myocytes, Cardiac/enzymology , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sarcoplasmic Reticulum/enzymology , Sodium-Calcium Exchanger/metabolism , Animals , Heart Failure/genetics , Heart Failure/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Myocardial Contraction , NIMA-Interacting Peptidylprolyl Isomerase/deficiency , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Protein Binding , Time Factors
7.
Circ Res ; 121(11): 1263-1278, 2017 Nov 10.
Article in English | MEDLINE | ID: mdl-28912121

ABSTRACT

RATIONALE: Cortical bone stem cells (CBSCs) have been shown to reduce ventricular remodeling and improve cardiac function in a murine myocardial infarction (MI) model. These effects were superior to other stem cell types that have been used in recent early-stage clinical trials. However, CBSC efficacy has not been tested in a preclinical large animal model using approaches that could be applied to patients. OBJECTIVE: To determine whether post-MI transendocardial injection of allogeneic CBSCs reduces pathological structural and functional remodeling and prevents the development of heart failure in a swine MI model. METHODS AND RESULTS: Female Göttingen swine underwent left anterior descending coronary artery occlusion, followed by reperfusion (ischemia-reperfusion MI). Animals received, in a randomized, blinded manner, 1:1 ratio, CBSCs (n=9; 2×107 cells total) or placebo (vehicle; n=9) through NOGA-guided transendocardial injections. 5-ethynyl-2'deoxyuridine (EdU)-a thymidine analog-containing minipumps were inserted at the time of MI induction. At 72 hours (n=8), initial injury and cell retention were assessed. At 3 months post-MI, cardiac structure and function were evaluated by serial echocardiography and terminal invasive hemodynamics. CBSCs were present in the MI border zone and proliferating at 72 hours post-MI but had no effect on initial cardiac injury or structure. At 3 months, CBSC-treated hearts had significantly reduced scar size, smaller myocytes, and increased myocyte nuclear density. Noninvasive echocardiographic measurements showed that left ventricular volumes and ejection fraction were significantly more preserved in CBSC-treated hearts, and invasive hemodynamic measurements documented improved cardiac structure and functional reserve. The number of EdU+ cardiac myocytes was increased in CBSC- versus vehicle- treated animals. CONCLUSIONS: CBSC administration into the MI border zone reduces pathological cardiac structural and functional remodeling and improves left ventricular functional reserve. These effects reduce those processes that can lead to heart failure with reduced ejection fraction.


Subject(s)
Cortical Bone/cytology , Myocardial Infarction/surgery , Myocardial Reperfusion Injury/surgery , Myocardium/pathology , Stem Cells/physiology , Ventricular Function, Left , Ventricular Remodeling , Animals , Apoptosis , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/prevention & control , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Female , Hemodynamics , Myocardial Contraction , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Phenotype , Stroke Volume , Sus scrofa , Time Factors
8.
Am J Physiol Heart Circ Physiol ; 313(3): H620-H630, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28646025

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is one of the most common genetic cardiac diseases and among the leading causes of sudden cardiac death (SCD) in the young. The cellular mechanisms leading to SCD in HCM are not well known. Prolongation of the action potential (AP) duration (APD) is a common feature predisposing hypertrophied hearts to SCD. Previous studies have explored the roles of inward Na+ and Ca2+ in the development of HCM, but the role of repolarizing K+ currents has not been defined. The objective of this study was to characterize the arrhythmogenic phenotype and cellular electrophysiological properties of mice with HCM, induced by myosin-binding protein C (MyBPC) knockout (KO), and to test the hypothesis that remodeling of repolarizing K+ currents causes APD prolongation in MyBPC KO myocytes. We demonstrated that MyBPC KO mice developed severe hypertrophy and cardiac dysfunction compared with wild-type (WT) control mice. Telemetric electrocardiographic recordings of awake mice revealed prolongation of the corrected QT interval in the KO compared with WT control mice, with overt ventricular arrhythmias. Whole cell current- and voltage-clamp experiments comparing KO with WT mice demonstrated ventricular myocyte hypertrophy, AP prolongation, and decreased repolarizing K+ currents. Quantitative RT-PCR analysis revealed decreased mRNA levels of several key K+ channel subunits. In conclusion, decrease in repolarizing K+ currents in MyBPC KO ventricular myocytes contributes to AP and corrected QT interval prolongation and could account for the arrhythmia susceptibility.NEW & NOTEWORTHY Ventricular myocytes isolated from the myosin-binding protein C knockout hypertrophic cardiomyopathy mouse model demonstrate decreased repolarizing K+ currents and action potential and QT interval prolongation, linking cellular repolarization abnormalities with arrhythmia susceptibility and the risk for sudden cardiac death in hypertrophic cardiomyopathy.


Subject(s)
Carrier Proteins/metabolism , Heart Rate , Myocytes, Cardiac/metabolism , Potassium Channels/metabolism , Potassium/metabolism , Tachycardia, Ventricular/metabolism , Ventricular Premature Complexes/metabolism , Action Potentials , Animals , Cardiomegaly/genetics , Cardiomegaly/metabolism , Cardiomegaly/pathology , Carrier Proteins/genetics , Disease Models, Animal , Electrocardiography, Ambulatory , Fibrosis , Genetic Predisposition to Disease , Kinetics , Male , Mice, 129 Strain , Mice, Knockout , Myocardial Contraction , Myocytes, Cardiac/pathology , Patch-Clamp Techniques , Phenotype , Potassium Channels/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/pathology , Tachycardia, Ventricular/physiopathology , Telemetry , Ventricular Premature Complexes/genetics , Ventricular Premature Complexes/pathology , Ventricular Premature Complexes/physiopathology
9.
Nature ; 545(7652): 93-97, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28445457

ABSTRACT

Mitochondrial calcium (mCa2+) has a central role in both metabolic regulation and cell death signalling, however its role in homeostatic function and disease is controversial. Slc8b1 encodes the mitochondrial Na+/Ca2+ exchanger (NCLX), which is proposed to be the primary mechanism for mCa2+ extrusion in excitable cells. Here we show that tamoxifen-induced deletion of Slc8b1 in adult mouse hearts causes sudden death, with less than 13% of affected mice surviving after 14 days. Lethality correlated with severe myocardial dysfunction and fulminant heart failure. Mechanistically, cardiac pathology was attributed to mCa2+ overload driving increased generation of superoxide and necrotic cell death, which was rescued by genetic inhibition of mitochondrial permeability transition pore activation. Corroborating these findings, overexpression of NCLX in the mouse heart by conditional transgenesis had the beneficial effect of augmenting mCa2+ clearance, preventing permeability transition and protecting against ischaemia-induced cardiomyocyte necrosis and heart failure. These results demonstrate the essential nature of mCa2+ efflux in cellular function and suggest that augmenting mCa2+ efflux may be a viable therapeutic strategy in disease.


Subject(s)
Calcium/metabolism , Homeostasis , Mitochondria/metabolism , Sodium-Calcium Exchanger/metabolism , Animals , Cell Survival , Death, Sudden , Female , Gene Deletion , HeLa Cells , Heart Failure/metabolism , Heart Failure/pathology , Humans , Male , Mice , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Necrosis , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Sodium-Calcium Exchanger/genetics , Superoxides/metabolism , Tamoxifen/pharmacology , Ventricular Remodeling
10.
Circ Res ; 119(7): 865-79, 2016 Sep 16.
Article in English | MEDLINE | ID: mdl-27461939

ABSTRACT

RATIONALE: Catecholamines increase cardiac contractility, but exposure to high concentrations or prolonged exposures can cause cardiac injury. A recent study demonstrated that a single subcutaneous injection of isoproterenol (ISO; 200 mg/kg) in mice causes acute myocyte death (8%-10%) with complete cardiac repair within a month. Cardiac regeneration was via endogenous cKit(+) cardiac stem cell-mediated new myocyte formation. OBJECTIVE: Our goal was to validate this simple injury/regeneration system and use it to study the biology of newly forming adult cardiac myocytes. METHODS AND RESULTS: C57BL/6 mice (n=173) were treated with single injections of vehicle, 200 or 300 mg/kg ISO, or 2 daily doses of 200 mg/kg ISO for 6 days. Echocardiography revealed transiently increased systolic function and unaltered diastolic function 1 day after single ISO injection. Single ISO injections also caused membrane injury in ≈10% of myocytes, but few of these myocytes appeared to be necrotic. Circulating troponin I levels after ISO were elevated, further documenting myocyte damage. However, myocyte apoptosis was not increased after ISO injury. Heart weight to body weight ratio and fibrosis were also not altered 28 days after ISO injection. Single- or multiple-dose ISO injury was not associated with an increase in the percentage of 5-ethynyl-2'-deoxyuridine-labeled myocytes. Furthermore, ISO injections did not increase new myocytes in cKit(+/Cre)×R-GFP transgenic mice. CONCLUSIONS: A single dose of ISO causes injury in ≈10% of the cardiomyocytes. However, most of these myocytes seem to recover and do not elicit cKit(+) cardiac stem cell-derived myocyte regeneration.


Subject(s)
Isoproterenol/administration & dosage , Isoproterenol/toxicity , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Regeneration/drug effects , Animals , Catecholamines/administration & dosage , Catecholamines/toxicity , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myocytes, Cardiac/physiology , Regeneration/physiology
11.
Sci Rep ; 6: 23431, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-27005843

ABSTRACT

Determination of fundamental mechanisms of disease often hinges on histopathology visualization and quantitative image analysis. Currently, the analysis of multi-channel fluorescence tissue images is primarily achieved by manual measurements of tissue cellular content and sub-cellular compartments. Since the current manual methodology for image analysis is a tedious and subjective approach, there is clearly a need for an automated analytical technique to process large-scale image datasets. Here, we introduce Nuquantus (Nuclei quantification utility software) - a novel machine learning-based analytical method, which identifies, quantifies and classifies nuclei based on cells of interest in composite fluorescent tissue images, in which cell borders are not visible. Nuquantus is an adaptive framework that learns the morphological attributes of intact tissue in the presence of anatomical variability and pathological processes. Nuquantus allowed us to robustly perform quantitative image analysis on remodeling cardiac tissue after myocardial infarction. Nuquantus reliably classifies cardiomyocyte versus non-cardiomyocyte nuclei and detects cell proliferation, as well as cell death in different cell classes. Broadly, Nuquantus provides innovative computerized methodology to analyze complex tissue images that significantly facilitates image analysis and minimizes human bias.


Subject(s)
Cell Nucleus/metabolism , Fluorescent Antibody Technique/methods , Image Processing, Computer-Assisted/methods , Machine Learning , Myocytes, Cardiac/cytology , Software , Animals , Cell Proliferation , Cell Survival , Humans , Microscopy, Confocal , Myocytes, Cardiac/metabolism
12.
Circ Res ; 117(11): 926-32, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26383970

ABSTRACT

RATIONALE: Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-ß super family of secreted factors. A recent study showed that reduced GDF11 blood levels with aging was associated with pathological cardiac hypertrophy (PCH) and restoring GDF11 to normal levels in old mice rescued PCH. OBJECTIVE: To determine whether and by what mechanism GDF11 rescues aging dependent PCH. METHODS AND RESULTS: Twenty-four-month-old C57BL/6 mice were given a daily injection of either recombinant (r) GDF11 at 0.1 mg/kg or vehicle for 28 days. rGDF11 bioactivity was confirmed in vitro. After treatment, rGDF11 levels were significantly increased, but there was no significant effect on either heart weight or body weight. Heart weight/body weight ratios of old mice were not different from 8- or 12-week-old animals, and the PCH marker atrial natriuretic peptide was not different in young versus old mice. Ejection fraction, internal ventricular dimension, and septal wall thickness were not significantly different between rGDF11 and vehicle-treated animals at baseline and remained unchanged at 1, 2, and 4 weeks of treatment. There was no difference in myocyte cross-sectional area rGDF11 versus vehicle-treated old animals. In vitro studies using phenylephrine-treated neonatal rat ventricular myocytes, to explore the putative antihypertrophic effects of GDF11, showed that GDF11 did not reduce neonatal rat ventricular myocytes hypertrophy, but instead induced hypertrophy. CONCLUSIONS: Our studies show that there is no age-related PCH in disease-free 24-month-old C57BL/6 mice and that restoring GDF11 in old mice has no effect on cardiac structure or function.


Subject(s)
Aging/pathology , Bone Morphogenetic Proteins/pharmacology , Cardiomegaly/prevention & control , Growth Differentiation Factors/pharmacology , Myocytes, Cardiac/drug effects , Ventricular Remodeling/drug effects , Adrenergic alpha-1 Receptor Agonists/pharmacology , Age Factors , Aging/metabolism , Animals , Bone Morphogenetic Proteins/administration & dosage , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/physiopathology , Cells, Cultured , Drug Administration Schedule , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Growth Differentiation Factors/administration & dosage , Injections, Intraperitoneal , Male , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Recombinant Proteins/pharmacology , Time Factors , Ventricular Function, Left/drug effects , Ventricular Pressure/drug effects
13.
J Mol Cell Cardiol ; 86: 179-86, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26231084

ABSTRACT

RATIONALE: There is a current need for the development of new therapies for patients with heart failure. OBJECTIVE: We test the effects of members of the corticotropin-releasing factor (CRF) family of peptides on myocyte contractility to validate them as potential heart failure therapeutics. METHODS AND RESULTS: Adult feline left ventricular myocytes (AFMs) were isolated and contractility was assessed in the presence and absence of CRF peptides Urocortin 2 (UCN2), Urocortin 3 (UCN3), Stresscopin (SCP), and the ß-adrenergic agonist isoproterenol (Iso). An increase in fractional shortening and peak Ca(2+) transient amplitude was seen in the presence of all CRF peptides. A decrease in Ca(2+) decay rate (Tau) was also observed at all concentrations tested. cAMP generation was measured by ELISA in isolated AFMs in response to the CRF peptides and Iso and significant production was seen at all concentrations and time points tested. CONCLUSIONS: The CRF family of peptides effectively increases cardiac contractility and should be evaluated as potential novel therapeutics for heart failure patients.


Subject(s)
Corticotropin-Releasing Hormone/administration & dosage , Heart Failure/drug therapy , Myocardial Contraction/drug effects , Urocortins/administration & dosage , Animals , Cats , Heart Failure/metabolism , Heart Failure/pathology , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Humans , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology
14.
J Am Coll Cardiol ; 66(2): 139-53, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26160630

ABSTRACT

BACKGROUND: Vascular endothelial growth factor (VEGF)-B activates cytoprotective/antiapoptotic and minimally angiogenic mechanisms via VEGF receptors. Therefore, VEGF-B might be an ideal candidate for the treatment of dilated cardiomyopathy, which displays modest microvascular rarefaction and increased rate of apoptosis. OBJECTIVES: This study evaluated VEGF-B gene therapy in a canine model of tachypacing-induced dilated cardiomyopathy. METHODS: Chronically instrumented dogs underwent cardiac tachypacing for 28 days. Adeno-associated virus serotype 9 viral vectors carrying VEGF-B167 genes were infused intracoronarily at the beginning of the pacing protocol or during compensated heart failure. Moreover, we tested a novel VEGF-B167 transgene controlled by the atrial natriuretic factor promoter. RESULTS: Compared with control subjects, VEGF-B167 markedly preserved diastolic and contractile function and attenuated ventricular chamber remodeling, halting the progression from compensated to decompensated heart failure. Atrial natriuretic factor-VEGF-B167 expression was low in normally functioning hearts and stimulated by cardiac pacing; it thus functioned as an ideal therapeutic transgene, active only under pathological conditions. CONCLUSIONS: Our results, obtained with a standard technique of interventional cardiology in a clinically relevant animal model, support VEGF-B167 gene transfer as an affordable and effective new therapy for nonischemic heart failure.


Subject(s)
Cardiomyopathy, Dilated/therapy , Genetic Therapy/methods , Vascular Endothelial Growth Factor B/genetics , Animals , Coronary Vessels , Disease Models, Animal , Dogs , Infusions, Intra-Arterial , Male , Transgenes , Translational Research, Biomedical , Treatment Outcome
15.
Cell Rep ; 12(1): 23-34, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26119731

ABSTRACT

Cardiac contractility is mediated by a variable flux in intracellular calcium (Ca(2+)), thought to be integrated into mitochondria via the mitochondrial calcium uniporter (MCU) channel to match energetic demand. Here, we examine a conditional, cardiomyocyte-specific, mutant mouse lacking Mcu, the pore-forming subunit of the MCU channel, in adulthood. Mcu(-/-) mice display no overt baseline phenotype and are protected against mCa(2+) overload in an in vivo myocardial ischemia-reperfusion injury model by preventing the activation of the mitochondrial permeability transition pore, decreasing infarct size, and preserving cardiac function. In addition, we find that Mcu(-/-) mice lack contractile responsiveness to acute ß-adrenergic receptor stimulation and in parallel are unable to activate mitochondrial dehydrogenases and display reduced bioenergetic reserve capacity. These results support the hypothesis that MCU may be dispensable for homeostatic cardiac function but required to modulate Ca(2+)-dependent metabolism during acute stress.


Subject(s)
Calcium Channels/metabolism , Energy Metabolism , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Stress, Physiological , Animals , Calcium/metabolism , Calcium Channels/genetics , Cells, Cultured , Mice , Mice, Inbred C57BL , Myocardial Contraction , Myocytes, Cardiac/physiology
16.
Antioxid Redox Signal ; 21(6): 863-79, 2014 Aug 20.
Article in English | MEDLINE | ID: mdl-24800979

ABSTRACT

AIMS: Mitochondrial Ca2+ homeostasis is crucial for balancing cell survival and death. The recent discovery of the molecular identity of the mitochondrial Ca2+ uniporter pore (MCU) opens new possibilities for applying genetic approaches to study mitochondrial Ca2+ regulation in various cell types, including cardiac myocytes. Basal tyrosine phosphorylation of MCU was reported from mass spectroscopy of human and mouse tissues, but the signaling pathways that regulate mitochondrial Ca2+ entry through posttranslational modifications of MCU are completely unknown. Therefore, we investigated α1-adrenergic-mediated signal transduction of MCU posttranslational modification and function in cardiac cells. RESULTS: α1-adrenoceptor (α1-AR) signaling translocated activated proline-rich tyrosine kinase 2 (Pyk2) from the cytosol to mitochondrial matrix and accelerates mitochondrial Ca2+ uptake via Pyk2-dependent MCU phosphorylation and tetrametric MCU channel pore formation. Moreover, we found that α1-AR stimulation increases reactive oxygen species production at mitochondria, mitochondrial permeability transition pore activity, and initiates apoptotic signaling via Pyk2-dependent MCU activation and mitochondrial Ca2+ overload. INNOVATION: Our data indicate that inhibition of α1-AR-Pyk2-MCU signaling represents a potential novel therapeutic target to limit or prevent mitochondrial Ca2+ overload, oxidative stress, mitochondrial injury, and myocardial death during pathophysiological conditions, where chronic adrenergic stimulation is present. CONCLUSION: The α1-AR-Pyk2-dependent tyrosine phosphorylation of the MCU regulates mitochondrial Ca2+ entry and apoptosis in cardiac cells.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Focal Adhesion Kinase 2/metabolism , Mitochondria/metabolism , Signal Transduction , Animals , Apoptosis Regulatory Proteins/metabolism , Cell Line , Cytosol/metabolism , Humans , Models, Biological , Myocytes, Cardiac/metabolism , Phosphorylation , Protein Binding , Protein Multimerization , Protein Transport , Rats , Reactive Oxygen Species/metabolism , Receptors, Adrenergic, alpha-1/metabolism
17.
Circ Res ; 114(11): 1700-1712, 2014 May 23.
Article in English | MEDLINE | ID: mdl-24718482

ABSTRACT

RATIONALE: Sorafenib is an effective treatment for renal cell carcinoma, but recent clinical reports have documented its cardiotoxicity through an unknown mechanism. OBJECTIVE: Determining the mechanism of sorafenib-mediated cardiotoxicity. METHODS AND RESULTS: Mice treated with sorafenib or vehicle for 3 weeks underwent induced myocardial infarction (MI) after 1 week of treatment. Sorafenib markedly decreased 2-week survival relative to vehicle-treated controls, but echocardiography at 1 and 2 weeks post MI detected no differences in cardiac function. Sorafenib-treated hearts had significantly smaller diastolic and systolic volumes and reduced heart weights. High doses of sorafenib induced necrotic death of isolated myocytes in vitro, but lower doses did not induce myocyte death or affect inotropy. Histological analysis documented increased myocyte cross-sectional area despite smaller heart sizes after sorafenib treatment, further suggesting myocyte loss. Sorafenib caused apoptotic cell death of cardiac- and bone-derived c-kit+ stem cells in vitro and decreased the number of BrdU+ (5-bromo-2'-deoxyuridine+) myocytes detected at the infarct border zone in fixed tissues. Sorafenib had no effect on infarct size, fibrosis, or post-MI neovascularization. When sorafenib-treated animals received metoprolol treatment post MI, the sorafenib-induced increase in post-MI mortality was eliminated, cardiac function was improved, and myocyte loss was ameliorated. CONCLUSIONS: Sorafenib cardiotoxicity results from myocyte necrosis rather than from any direct effect on myocyte function. Surviving myocytes undergo pathological hypertrophy. Inhibition of c-kit+ stem cell proliferation by inducing apoptosis exacerbates damage by decreasing endogenous cardiac repair. In the setting of MI, which also causes large-scale cell loss, sorafenib cardiotoxicity dramatically increases mortality.


Subject(s)
Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacology , Heart/drug effects , Myocardial Infarction/mortality , Niacinamide/analogs & derivatives , Phenylurea Compounds/adverse effects , Phenylurea Compounds/pharmacology , Animals , Apoptosis/drug effects , Cats , Cell Proliferation/drug effects , Cells, Cultured , Disease Models, Animal , Dose-Response Relationship, Drug , In Vitro Techniques , Male , Metoprolol/pharmacology , Mice , Mice, Inbred C57BL , Myocardial Infarction/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Niacinamide/adverse effects , Niacinamide/pharmacology , Proto-Oncogene Proteins c-kit/drug effects , Proto-Oncogene Proteins c-kit/metabolism , Sorafenib
18.
Am J Physiol Heart Circ Physiol ; 305(12): H1736-51, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24124188

ABSTRACT

Ca(+) influx to mitochondria is an important trigger for both mitochondrial dynamics and ATP generation in various cell types, including cardiac cells. Mitochondrial Ca(2+) influx is mainly mediated by the mitochondrial Ca(2+) uniporter (MCU). Growing evidence also indicates that mitochondrial Ca(2+) influx mechanisms are regulated not solely by MCU but also by multiple channels/transporters. We have previously reported that skeletal muscle-type ryanodine receptor (RyR) type 1 (RyR1), which expressed at the mitochondrial inner membrane, serves as an additional Ca(2+) uptake pathway in cardiomyocytes. However, it is still unclear which mitochondrial Ca(2+) influx mechanism is the dominant regulator of mitochondrial morphology/dynamics and energetics in cardiomyocytes. To investigate the role of mitochondrial RyR1 in the regulation of mitochondrial morphology/function in cardiac cells, RyR1 was transiently or stably overexpressed in cardiac H9c2 myoblasts. We found that overexpressed RyR1 was partially localized in mitochondria as observed using both immunoblots of mitochondrial fractionation and confocal microscopy, whereas RyR2, the main RyR isoform in the cardiac sarcoplasmic reticulum, did not show any expression at mitochondria. Interestingly, overexpression of RyR1 but not MCU or RyR2 resulted in mitochondrial fragmentation. These fragmented mitochondria showed bigger and sustained mitochondrial Ca(2+) transients compared with basal tubular mitochondria. In addition, RyR1-overexpressing cells had a higher mitochondrial ATP concentration under basal conditions and showed more ATP production in response to cytosolic Ca(2+) elevation compared with nontransfected cells as observed by a matrix-targeted ATP biosensor. These results indicate that RyR1 possesses a mitochondrial targeting/retention signal and modulates mitochondrial morphology and Ca(2+)-induced ATP production in cardiac H9c2 myoblasts.


Subject(s)
Adenosine Triphosphate/biosynthesis , Calcium/metabolism , Mitochondria/metabolism , Myoblasts, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Calcium Signaling/physiology , Cell Line , Mitochondria/genetics , Rats , Ryanodine Receptor Calcium Release Channel/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...