Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732088

ABSTRACT

Pregnancy at advanced maternal age (AMA) is a condition of potential risk for the development of maternal-fetal complications with possible repercussions even in the long term. Here, we analyzed the changes in plasma redox balance and the effects of plasma on human umbilical cord mesenchymal cells (hUMSCs) in AMA pregnant women (patients) at various timings of pregnancy. One hundred patients and twenty pregnant women younger than 40 years (controls) were recruited and evaluated at various timings during pregnancy until after delivery. Plasma samples were used to measure the thiobarbituric acid reactive substances (TBARS), glutathione and nitric oxide (NO). In addition, plasma was used to stimulate the hUMSCs, which were tested for cell viability, reactive oxygen species (ROS) and NO release. The obtained results showed that, throughout pregnancy until after delivery in patients, the levels of plasma glutathione and NO were lower than those of controls, while those of TBARS were higher. Moreover, plasma of patients reduced cell viability and NO release, and increased ROS release in hUMSCs. Our results highlighted alterations in the redox balance and the presence of potentially harmful circulating factors in plasma of patients. They could have clinical relevance for the prevention of complications related to AMA pregnancy.


Subject(s)
Maternal Age , Mesenchymal Stem Cells , Nitric Oxide , Oxidation-Reduction , Reactive Oxygen Species , Thiobarbituric Acid Reactive Substances , Umbilical Cord , Humans , Female , Pregnancy , Adult , Mesenchymal Stem Cells/metabolism , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Nitric Oxide/blood , Thiobarbituric Acid Reactive Substances/metabolism , Umbilical Cord/cytology , Umbilical Cord/metabolism , Glutathione/metabolism , Glutathione/blood , Cell Survival , Oxidative Stress , Plasma/metabolism
3.
Arch Gerontol Geriatr ; 120: 105340, 2024 May.
Article in English | MEDLINE | ID: mdl-38295616

ABSTRACT

PURPOSE: Lifestyle medicine interventions combining physical, nutritional, and psychological components have been found effective in general older population. However, evidence from the long-term care (LTC) is scarce. METHODS: We conducted a pragmatic, two-arm, parallel group, superiority randomized controlled trial. Residents living in a LTC facility for one or more years, able to discern and to express informed consent, and requiring nursing care were considered eligible. The three-months intervention combined bi-weekly physical exercise groups, a healthy diet, and weekly psychological wellbeing sessions. Patients of the control group were subjected to routine care. At the end of the study participants were assessed using Barthel Index, Katz Activities of Daily Living, and Tinetti scales. RESULTS: A total of 54 patients with a mean age of 84 years took part to the study. Physical exercise and psychological wellbeing sessions were mostly attended by all the subjects of the intervention group. Both groups took less calories than planned in the diets; in addition, the intervention group showed a lower energy and carbohydrates intake than the control group. At the end of the study, the intervention group showed a significant improvement in the total scores of all the scales. CONCLUSIONS: This intervention was effective in improving functionality in older people living in the LTC setting. Results were achieved in a short timeframe, likely due to synergistic interactions between components. However, a further exploration of underlying factors is needed, to better understand the barriers that hampered a complete intervention delivery in this context.


Subject(s)
Activities of Daily Living , Long-Term Care , Humans , Aged , Aged, 80 and over , Life Style , Exercise , Nursing Homes
4.
Int J Mol Sci ; 24(19)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37834361

ABSTRACT

Circulating extracellular vesicles (EVs) may play a pathophysiological role in the onset of complications of subarachnoid hemorrhage (SAH), potentially contributing to the development of vasospasm (VP). In this study, we aimed to characterize circulating EVs in SAH patients and examine their effects on endothelial and smooth muscle cells (SMCs). In a total of 18 SAH patients, 10 with VP (VP), 8 without VP (NVP), and 5 healthy controls (HC), clinical variables were recorded at different time points. EVs isolated from plasma samples were characterized and used to stimulate human vascular endothelial cells (HUVECs) and SMCs. We found that EVs from SAH patients expressed markers of T-lymphocytes and platelets and had a larger size and a higher concentration compared to those from HC. Moreover, EVs from VP patients reduced cell viability and mitochondrial membrane potential in HUVECs and increased oxidants and nitric oxide (NO) release. Furthermore, EVs from SAH patients increased intracellular calcium levels in SMCs. Altogether, our findings reveal an altered pattern of circulating EVs in SAH patients, suggesting their pathogenic role in promoting endothelial damage and enhancing smooth muscle reactivity. These results have significant implications for the use of EVs as potential diagnostic/prognostic markers and therapeutic tools in SAH management.


Subject(s)
Extracellular Vesicles , Subarachnoid Hemorrhage , Vasospasm, Intracranial , Humans , Subarachnoid Hemorrhage/complications , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Blood Platelets/metabolism , Vasospasm, Intracranial/metabolism
5.
Antioxidants (Basel) ; 12(10)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37891966

ABSTRACT

Oxidative stress, the alteration of mitochondrial function, and the neurovascular unit (NVU), play a role in Amyotrophic Lateral Sclerosis (ALS) pathogenesis. We aimed to demonstrate the changes in the plasma redox system and nitric oxide (NO) in 32 new ALS-diagnosed patients in treatment with Acetyl-L-Carnitine (ALCAR) compared to healthy controls. We also evaluated the effects of plasma on human umbilical cord-derived endothelial vascular cells (HUVEC) and astrocytes. The analyses were performed at the baseline (T0), after three months (T1), and after six months (T2). In ALS patients at T0/T1, the plasma markers of lipid peroxidation, thiobarbituric acid reactive substances (TBARS) and 4-hydroxy nonenal (4-HNE) were higher, whereas the antioxidants, glutathione (GSH) and the glutathione peroxidase (GPx) activity were lower than in healthy controls. At T2, plasma TBARS and 4-HNE decreased, whereas plasma GSH and the GPx activity increased in ALS patients. As regards NO, the plasma levels were firmly lower at T0-T2 than those of healthy controls. Cell viability, and mitochondrial membrane potential in HUVEC/astrocytes treated with the plasma of ALS patients at T0-T2 were reduced, while the oxidant release increased. Those results, which confirmed the fundamental role of oxidative stress, mitochondrial function, and of the NVU in ALS pathogenesis, can have a double meaning, acting as disease markers at baseline and potential markers of drug effects in clinical practice and during clinical trials.

6.
Int J Mol Sci ; 24(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37373343

ABSTRACT

Hepatitis C virus (HCV) patients are at increased risk of cardiovascular disease (CVD). In this study, we aimed to evaluate the role of extracellular vesicles (EVs) as pathogenic factors for the onset of HCV-related endothelial dysfunction. Sixty-five patients with various stages of HCV-related chronic liver disease were enrolled in this case series. Plasma EVs were characterized and used to stimulate human vascular endothelial cells (HUVEC), which were examined for cell viability, mitochondrial membrane potential, and reactive oxygen species (ROS) release. The results showed that EVs from HCV patients were mainly of endothelial and lymphocyte origin. Moreover, EVs were able to reduce cell viability and mitochondrial membrane potential of HUVEC, while increasing ROS release. Those harmful effects were reduced by the pretreatment of HUVEC with the NLR family pyrin domain containing 3 (NLRP3)/AMP-activated protein kinase and protein kinase B blockers. In conclusion, in HCV patients, we could highlight a circulating pattern of EVs capable of inducing damage to the endothelium. These data represent a novel possible pathogenic mechanism underlying the reported increase of CVD occurrence in HCV infection and could be of clinical relevance also in relation to the widespread use of antiviral drugs.


Subject(s)
Extracellular Vesicles , Hepatitis C , Humans , Endothelial Cells/pathology , Hepacivirus , Reactive Oxygen Species/metabolism , Hepatitis C/metabolism , Extracellular Vesicles/metabolism
7.
Article in English | MEDLINE | ID: mdl-36998125

ABSTRACT

BACKGROUND: The management of neurodegenerative diseases can be frustrating for clinicians, given the limited progress of conventional medicine in this context. AIM: For this reason, a more comprehensive, integrative approach is urgently needed. Among various emerging focuses for intervention, the modulation of central nervous system energetics, oxidative stress, and inflammation is becoming more and more promising. METHOD: In particular, electrons leakage involved in the mitochondrial energetics can generate reactive oxygen-free radical-related mitochondrial dysfunction that would contribute to the etiopathology of many disorders, such as Alzheimer's and other dementias, Parkinson's disease, multiple sclerosis, stroke, and amyotrophic lateral sclerosis (ALS). RESULTS: In this context, using agents, like acetyl L-carnitine (ALCAR), provides mitochondrial support, reduces oxidative stress, and improves synaptic transmission. CONCLUSION: This narrative review aims to update the existing literature on ALCAR molecular profile, tolerability, and translational clinical potential use in neurodegeneration, focusing on ALS.

8.
Biomedicines ; 10(11)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36359372

ABSTRACT

Although recent data highlight the greater protective effects exerted by Membrane Blue Dual (MBD), a precise analysis of the mechanisms of action is missing. We examined the effects of MBD with/without polyethylene glycol (PEG) on both human retinal pigment epithelial cells (ARPE-19) and retinal ganglion cells-like (RGC-5) cultured in the presence/absence of ultraviolet B (UVB) treatment on mitochondria function, oxidants, and apoptosis. In ARPE-19/RGC-5 cells either treated or not with UVB, the effects of MBD with/without PEG were evaluated by specific assays for viability, mitochondrial membrane potential and mitochondrial reactive oxygen species (mitoROS) release. Annexin V was used to detect apoptosis, whereas trypan blue and the scratch assay were used for proliferation/migration. In both physiologic conditions and in the presence of UVB, MBD with/without PEG increased cell viability, mitochondrial membrane potential, proliferation and migration in both ARPE-19 and RGC-5 cells. In general, the effects of MBD with PEG were greater than those caused by MBD without PEG. Our results suggest that, in particular, MBD with PEG is a safe and effective dye for vitreoretinal surgery through the modulation of mitochondrial function.

9.
Front Neurosci ; 16: 827998, 2022.
Article in English | MEDLINE | ID: mdl-36033627

ABSTRACT

Background/Aim: Misophonia is a disorder characterized by reduced tolerance to specific sounds or stimuli known as "triggers," which tend to evoke negative emotional, physiological, and behavioral responses. In this study, we aimed to better characterize participants with misophonia through the evaluation of the response of the autonomic nervous system to "trigger sounds," a psychometric assessment, and the analysis of the neurological pathways. Materials and methods: Participants included 11 adults presenting with misophonic disturbance and 44 sex-matched healthy controls (HCs). Following recently proposed diagnostic criteria, the participants listened to six "trigger sounds" and a "general annoyance" sound (baby crying) during a series of physiological tests. The effects were examined through functional magnetic resonance imaging (fMRI), the analysis of heart rate variability (HRV), and of galvanic skin conductance (GSC). The fMRI was performed on a 3T Scanner. The HRV was obtained through the analysis of electrocardiogram, whereas the GSC was examined through the positioning of silver-chloride electrodes on fingers. Furthermore, the psychometric assessment included questionnaires focused on misophonia, psychopathology, resilience, anger, and motivation. Results: Participants with misophonia showed patterns of increased sympathetic activation in response to trigger sounds and a general annoyance sound, the low frequency (LF) component of HRV, the sympathetic index, and the number of significant GSC over the threshold, where the amplitude/phasic response of GSC was higher. The fMRI analysis provided evidence for the activation of the temporal cortex, the limbic area, the ventromedial prefrontal/premotor/cingulate cortex, and the cerebellum in participants with misophonia. In addition, the psychometric assessment seemed to differentiate misophonia as a construct independent from general psychopathology. Conclusion: These results suggest the activation of a specific auditory-insula-limbic pathway at the basis of the sympathetic activation observed in participants with misophonia in response to "trigger and general annoyance sounds." Further studies should disentangle the complex issue of whether misophonia represents a new clinical disorder or a non-pathological condition. These results could help to build diagnostic tests to recognize and better classify this disorder. The relevance of this question goes beyond purely theoretical issues, as in the first case, participants with misophonia should receive a diagnosis and a targeted treatment, while in the second case, they should not.

10.
Front Immunol ; 13: 849891, 2022.
Article in English | MEDLINE | ID: mdl-35359949

ABSTRACT

Acute kidney injury is a frequent complication of hospitalized patients and significantly increases morbidity and mortality, worsening costs and length of hospital stay. Despite this impact on healthcare system, treatment still remains only supportive (dialysis). Stem cell-derived extracellular vesicles are a promising option as they recapitulate stem cells properties, overcoming safety issues related to risks or rejection or aberrant differentiation. A growing body of evidence based on pre-clinical studies suggests that extracellular vesicles may be effective to treat acute kidney injury and to limit fibrosis through direct interference with pathogenic mechanisms of vascular and tubular epithelial cell damage. We herein analyze the state-of-the-art knowledge of therapeutic approaches with stem cell-derived extracellular vesicles for different forms of acute kidney injury (toxic, ischemic or septic) dissecting their cytoprotective, regenerative and immunomodulatory properties. We also analyze the potential impact of extracellular vesicles on the mechanisms of transition from acute kidney injury to chronic kidney disease, with a focus on the pivotal role of the inhibition of complement cascade in this setting. Despite some technical limits, nowadays the development of therapies based on stem cell-derived extracellular vesicles holds promise as a new frontier to limit acute kidney injury onset and progression.


Subject(s)
Acute Kidney Injury , Extracellular Vesicles , Renal Insufficiency, Chronic , Acute Kidney Injury/pathology , Acute Kidney Injury/therapy , Epithelial Cells/pathology , Extracellular Vesicles/pathology , Humans , Renal Insufficiency, Chronic/therapy , Stem Cells
11.
Biomedicines ; 10(3)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35327493

ABSTRACT

Oxidative stress, the alteration of mitochondrial function, and changes in the neurovascular unit (NVU) could play a role in Amyotrophic Lateral Sclerosis (ALS) pathogenesis. Our aim was to analyze the plasma redox system and nitric oxide (NO) in 25 ALS new-diagnosed patients and five healthy controls and the effects of plasma on the peroxidation/mitochondrial function in human umbilical cord-derived endothelial vascular cells (HUVEC) and astrocytes. In plasma, thiobarbituric acid reactive substances (TBARS), glutathione (GSH), and nitric oxide (NO) were analyzed by using specific assays. In HUVEC/astrocytes, the effects of plasma on the release of mitochondrial reactive oxygen species (mitoROS) and NO, viability, and mitochondrial membrane potential were investigated. In the plasma of ALS patients, an increase in TBARS and a reduction in GSH and NO were found. In HUVEC/astrocytes treated with a plasma of ALS patients, mitoROS increased, whereas cell viability and mitochondrial membrane potential decreased. Our results show that oxidative stress and NVU play a central role in ALS and suggest that unknown plasma factors could be involved in the disease pathogenesis. Quantifiable changes in ALS plasma related to redox state alterations can possibly be used for early diagnosis.

12.
J Cardiovasc Pharmacol ; 79(6): 827-832, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35170487

ABSTRACT

ABSTRACT: OR-1855 and OR-1896 are 2 hemodynamically active metabolites of the inodilator levosimendan, with calcium sensitizing activity, but their mechanism of action is still not fully understood. It has been previously reported that the positive inotropic effect of levosimendan is not potentiated by the adenylate cyclase activator forskolin, whereas forskolin does potentiate the effects of the phosphodiesterase (PDE) inhibitor milrinone. To ascertain whether the active metabolites follow the same pattern of levosimendan, the positive inotropic effects of OR- 1855 and OR-1896 were studied in guinea-pig-isolated papillary muscle in the presence and absence of forskolin. OR-1855 and OR-1896 were also tested as inhibitors of PDE-III and PDE-IV. Our results show that 0.1 µM forskolin did not potentiate the positive inotropic effect of OR-1855 or OR-1896, as in the case of the parent compound levosimendan. As in previous studies, the positive inotropic effect of milrinone was markedly potentiated in the presence of forskolin. From these data, we propose an explanation for the divergent behavior of the calcium sensitizing drugs and PDE inhibitors.


Subject(s)
Milrinone , Phosphodiesterase Inhibitors , Adenylyl Cyclases , Animals , Calcium/metabolism , Cardiotonic Agents/pharmacology , Colforsin/pharmacology , Guinea Pigs , Milrinone/pharmacology , Myocardial Contraction , Phosphodiesterase Inhibitors/pharmacology , Simendan/pharmacology
13.
Skin Pharmacol Physiol ; 35(1): 1-12, 2022.
Article in English | MEDLINE | ID: mdl-34237733

ABSTRACT

BACKGROUND: The altered balance between oxidants/antioxidants and inflammation, changes in nitric oxide (NO) release, and mitochondrial function have a role in skin aging through fibroblast modulation. Tocopherol is promising in counteracting the abovementioned events, but the effective mechanism of action needs to be clarified. OBJECTIVE: The aim of this study was to examine the effects of α-tocopherol on cell viability/proliferation, NO release, mitochondrial function, oxidants/antioxidants, and inflammation in human dermal fibroblasts (HDF) subjected to oxidative stress. METHODS: HDF were treated with H2O2 in the presence or absence of 1-10 µM α-tocopherol. Cell viability, reactive oxygen species (ROS), NO release, and mitochondrial membrane potential were measured; glutathione (GSH), superoxide dismutase (SOD)-1 and -2, glutathione peroxidase-1 (GPX-1), inducible NO synthase (iNOS), and Ki-67 were evaluated by RT-PCR and immunofluorescence; cell cycle was analyzed using FACS. Pro- and anti-inflammatory cytokine gene expression was analyzed through qRT-PCR. RESULTS: α-Tocopherol counteracts H2O2, although it remains unclear whether this effect is dose dependent. Improvement of cell viability, mitochondrial membrane potential, Ki-67 expression, and G0/G1 and G2/M phases of the cell cycle was observed. These effects were accompanied by the increase of GSH content and the reduction of SOD-1 and -2, GPX-1, and ROS release. Also, iNOS expression and NO release were inhibited, and pro-inflammatory cytokine gene expression was decreased, confirming the putative role of α-tocopherol against inflammation. CONCLUSION: α-Tocopherol exerts protective effects in HDF which underwent oxidative stress by modulating the redox status, inflammation, iNOS-dependent NO release, and mitochondrial function. These observations have a potential role in the prevention and treatment of photoaging-related skin cancers.


Subject(s)
Nitric Oxide , alpha-Tocopherol , Antioxidants/metabolism , Antioxidants/pharmacology , Fibroblasts/metabolism , Humans , Hydrogen Peroxide , Inflammation/drug therapy , Mitochondria/metabolism , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , alpha-Tocopherol/pharmacology
14.
Inquiry ; 58: 469580211061030, 2021.
Article in English | MEDLINE | ID: mdl-34894844

ABSTRACT

Breast reconstruction has gained from lipofilling the possibility to recover the aesthetic outcome of anatomical profile in a more natural appearance. However, until today, the long-term graft survival remains unpredictable, and sometimes it does not guarantee a well-adequate aesthetic result. In the present work, the morphological changes, occurring in fat mass used for refilling, harvested by the Coleman's procedure or through the washing/fragmenting procedure were analysed. Adipocyte size; immunohistochemistry against CD8, CD31, CD68 and M2-type macrophages and catalase enzyme, were analysed in vitro on fat mass cultured for 4 weeks. Our observation reveals an increase of connective tissue around the mass and a high number of immune cells occurrence in fat mass harvested by the Coleman's procedure. Instead, the washing/fragmented procedure would reduce the number of immune cells within the fat mass, increase the size of adipocytes, and cause a wider presence of active vessels profile and greater catalase expression. We hypothesize that the fat mass processed by the Coleman's procedure would remain more reactive due to a higher number of immune and macrophages cells, prone to develop cystic formation, leading to a suboptimal integration in the recipient site. On the other hand, the conditions more prone to realize an optimal integration would occur in the fat mass processed by the washing/fragmenting procedure: a reduced number of immune cells, low amount of connective tissue, presence of larger adipocytes. Follow-up monitoring did support our conclusion, as we observed a reduction of re-intervention for refilling procedure in patients treated with the washing/fragmenting procedure.


Subject(s)
Adipose Tissue , Tissue and Organ Harvesting , Adipocytes , Humans , Immunohistochemistry
15.
Front Public Health ; 9: 685860, 2021.
Article in English | MEDLINE | ID: mdl-34336772

ABSTRACT

Introduction: Compared to old people who live at home, depressive symptoms are more prevalent in those who live in long-term care facilities (LTCFs). Different kinds of non-pharmacological treatment approaches in LTCFs have been studied, including behavioral and cognitive-behavioral therapy, cognitive bibliotherapy, problem-solving therapy, brief psychodynamic therapy and life review/reminiscence. The aim of the current review was to systematically review non-pharmacological treatments used to treat depressed older adults with no or mild cognitive impairment (as described by a Mini Mental State Examination score > 20) living in LTCFs. Methods: A research was performed on PubMed and Scopus databases. Following the Preferred Reporting Items for Systematic Reviews and MetaAnalyses (PRISMA) flowchart, studies selection was made. The quality of each Randomized Controlled Trial was scored using the Jadad scale, Quasi-Experimental Design studies and Non-Experimental studies were scored based on the Newcastle-Ottawa Scale (NOS) Results: The review included 56 full text articles; according to the type of intervention, studies were grouped in the following areas: horticulture/gardening (n = 3), pet therapy (n = 4), physical exercise (n = 9), psychoeducation/rehabilitation (n = 15), psychotherapy (n = 3), reminiscence and story sharing (n = 14), miscellaneous (n = 8). Discussion and Conclusion: Despite mixed or negative findings in some cases, most studies included in this systematic review reported that the non-pharmacological interventions assessed were effective in the management of depressed elderly in the LTCFs context. Regrettably, the limitations and heterogeneity of the studies described above hinder the possibility to generalize and replicate results.


Subject(s)
Cognitive Behavioral Therapy , Cognitive Dysfunction , Aged , Cognitive Dysfunction/therapy , Exercise , Humans , Long-Term Care , Psychotherapy
16.
Front Med (Lausanne) ; 8: 693997, 2021.
Article in English | MEDLINE | ID: mdl-34277668

ABSTRACT

Changes of lipidic storage, oxidative stress and mitochondrial dysfunction may be involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Although the knowledge of intracellular pathways has vastly expanded in recent years, the role and mechanisms of circulating triggering factor(s) are debated. Thus, we tested the hypothesis that factors circulating in the blood of NAFLD patients may influence processes underlying the disease. Huh7.5 cells/primary human hepatocytes were exposed to plasma from 12 NAFLD patients and 12 healthy subjects and specific assays were performed to examine viability, H2O2 and mitochondrial reactive oxygen species (ROS) release, mitochondrial membrane potential and triglycerides content. The involvement of NLRP3 inflammasome and of signaling related to peroxisome-proliferator-activating-ligand-receptor-γ (PPARγ), sterol-regulatory-element-binding-protein-1c (SREBP-1c), nuclear-factor-kappa-light-chain-enhancer of activated B cells (NF-kB), and NADPH oxidase 2 (NOX2) was evaluated by repeating the experiments in the presence of NLRP3 inflammasome blocker, MCC950, and through Western blot. The results obtained shown that plasma of NAFLD patients was able to reduce cell viability and mitochondrial membrane potential by about 48 and 24% (p < 0.05), and to increase H2O2, mitochondrial ROS, and triglycerides content by about 42, 19, and 16% (p < 0.05), respectively. An increased expression of SREBP-1c, PPARγ, NF-kB and NOX2 of about 51, 121, 63, and 46%, respectively, was observed (p < 0.05), as well. Those effects were reduced by the use of MCC950. Thus, in hepatocytes, exposure to plasma from NAFLD patients induces a NAFLD-like phenotype by interference with NLRP3-inflammasome pathways and the activation of intracellular signaling related to SREBP-1c, PPARγ, NF-kB and NOX2.

17.
Antioxidants (Basel) ; 10(5)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922463

ABSTRACT

Although the exact pathogenetic mechanisms leading to age-related macular degeneration (AMD) have not been clearly identified, oxidative damage in the retina and choroid due to an imbalance between local oxidants/anti-oxidant systems leading to chronic inflammation could represent the trigger event. Different in vitro and in vivo models have demonstrated the involvement of reactive oxygen species generated in a highly oxidative environment in the development of drusen and retinal pigment epithelium (RPE) changes in the initial pathologic processes of AMD; moreover, recent evidence has highlighted the possible association of oxidative stress and neovascular AMD. Nitric oxide (NO), which is known to play a key role in retinal physiological processes and in the regulation of choroidal blood flow, under pathologic conditions could lead to RPE/photoreceptor degeneration due to the generation of peroxynitrite, a potentially cytotoxic tyrosine-nitrating molecule. Furthermore, the altered expression of the different isoforms of NO synthases could be involved in choroidal microvascular changes leading to neovascularization. The purpose of this review was to investigate the different pathways activated by oxidative/nitrosative stress in the pathogenesis of AMD, focusing on the mechanisms leading to neovascularization and on the possible protective role of anti-vascular endothelial growth factor agents in this context.

18.
Cancers (Basel) ; 13(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33916933

ABSTRACT

The aim of this study was to assess the effects of psychotherapy with music intervention (PMI) on anxiety, depression, redox status, and inflammation in breast cancer patients undergoing radiotherapy (RT). This monocentric randomized clinical trial recruited 60 patients who had a breast cancer operation and were undergoing postoperative RT. Eligible patients were randomized (1:1) in two groups: the control group (CG) received treatment as usual (n = 30), i.e., RT alone; the intervention group (PMI) received RT and psychotherapy with music intervention (n = 30), which was delivered in a group setting. Five patients were excluded after randomization. Assessments were performed at baseline (T0), at the end of RT (T1), and three months after the end of RT (T2). The main objectives of the study were the assessment of anxiety/depression, plasma glutathione (GSH), and thiobarbituric acid reactive substances (TBARS) in the two arms of the study. Our findings revealed a positive effect of PMI on anxiety, depression, resilience, and quality of life. Furthermore, a positive effect of PMI on redox status was found for the first time. Thus, in the PMI group, we found a significant increase of GSH (mean change 2.2 95%, CI 0.7 to 3.7) and a significant reduction of TBARS (mean change -1.1 95%, CI -1.8 to -0.3) at T2 vs. T0.

19.
Expert Rev Cardiovasc Ther ; 19(4): 325-335, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33739204

ABSTRACT

Introduction: In the 20 years since its introduction to the palette of intravenous hemodynamic therapies, the inodilator levosimendan has established itself as a valuable asset for the management of acute decompensated heart failure. Its pharmacology is notable for delivering inotropy via calcium sensitization without an increase in myocardial oxygen consumption.Areas covered: Experience with levosimendan has led to its applications expanding into perioperative hemodynamic support and various critical care settings, as well as an array of situations associated with acutely decompensated heart failure, such as right ventricular failure, cardiogenic shock with multi-organ dysfunction, and cardio-renal syndrome. Evidence suggests that levosimendan may be preferable to milrinone for patients in cardiogenic shock after cardiac surgery or for weaning from extracorporeal life support and may be superior to dobutamine in terms of short-term survival, especially in patients on beta-blockers. Positive effects on kidney function have been noted, further differentiating levosimendan from catecholamines and phosphodiesterase inhibitors.Expert opinion:Levosimendan can be a valuable resource in the treatment of acute cardiac dysfunction, especially in the presence of beta-blockers or ischemic cardiomyopathy. When attention is given to avoiding or correcting hypovolemia and hypokalemia, an early use of the drug in the treatment algorithm is preferred.


Subject(s)
Cardiotonic Agents/therapeutic use , Heart Failure/drug therapy , Simendan/therapeutic use , Adrenergic beta-Antagonists/therapeutic use , Cardiac Surgical Procedures , Critical Care , Dobutamine/administration & dosage , Heart Failure/physiopathology , Hemodynamics/drug effects , Humans , Shock, Cardiogenic/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...