Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(6): 3773-3784, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38301281

ABSTRACT

A longstanding challenge in catalysis by noble metals has been to understand the origin of enhancements of rates of hydrogen transfer that result from the bonding of oxygen near metal sites. We investigated structurally well-defined catalysts consisting of supported tetrairidium carbonyl clusters with single-atom (apical iridium) catalytic sites for ethylene hydrogenation. Reaction of the clusters with ethylene and H2 followed by O2 led to the onset of catalytic activity as a terminal CO ligand at each apical Ir atom was removed and bridging dioxygen ligands replaced CO ligands at neighboring (basal-plane) sites. The presence of the dioxygen ligands caused a 6-fold increase in the catalytic reaction rate, which is explained by the electron-withdrawing capability induced by the bridging dioxygen ligands, consistent with the inference that reductive elimination is rate-determining. Electronic-structure calculations demonstrate an additional role of the dioxygen ligands, changing the mechanism of hydrogen transfer from one involving equatorial hydride ligands to that involving bridging hydride ligands. This mechanism is made evident by an inverse kinetic isotope effect observed in ethylene hydrogenation reactions with H2 and, alternatively, with D2 on the cluster incorporating the dioxygen ligands and is a consequence of quasi-equilibrated hydrogen transfer in this catalyst. The same mechanism accounts for rate enhancements induced by the bridging dioxygen ligands for the catalytic reaction of H2 with D2 to give HD. We posit that the mechanism involving bridging hydride ligands facilitated by oxygen ligands remote from the catalytic site may have some generality in catalysis by oxide-supported noble metals.

2.
Angew Chem Int Ed Engl ; 60(18): 10239-10246, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33522703

ABSTRACT

We investigate the interaction between a molecule and a pore mouth-a critical step in adsorption processes-by characterizing the conformation of a macrocyclic calix[4]arene-TiIV complex, which is grafted on the external surface of a zeotype (*-SVY). X-ray absorption and 13 C{1 H} CPMAS NMR spectroscopies independently detect a unique conformation of this complex when it is grafted at crystallographically equivalent locations that lie at the interface of 7 Šhemispherical microporous cavities and the external surface. Electronic structure calculations support the presence of this unique conformation, and suggest that it is brought about by a specific orientation of the macrocycle that maximizes non-covalent interactions between calix[4]arene upper-rim tert-butyl substituents and the microporous-cavity walls. Our comparative study provides a rare "snapshot" of a molecule partially confined at a pore mouth, an essential intermediate for adsorption into micropores, and demonstrates how surrounding environment controls this confinement in a sensitive fashion.


Subject(s)
Calixarenes/chemistry , Macrocyclic Compounds/chemistry , Organometallic Compounds/chemistry , Phenols/chemistry , Titanium/chemistry , Density Functional Theory , Models, Molecular , Molecular Structure , Particle Size , Porosity , Surface Properties
3.
Angew Chem Int Ed Engl ; 59(27): 10939-10943, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32187782

ABSTRACT

Nests of three silanol groups are located on the internal pore surface of calcined zeolite SSZ-70. 2D 1 H double/triple-quantum single-quantum correlation NMR experiments enable a rigorous identification of these silanol triad nests. They reveal a close proximity to the structure directing agent (SDA), that is, N,N'-diisobutyl imidazolium cations, in the as-synthesized material, in which the defects are negatively charged (silanol dyad plus one charged SiO- siloxy group) for charge balance. It is inferred that ring strain prevents the condensation of silanol groups upon calcination and removal of the SDA to avoid energetically unfavorable three-rings. In contrast, tetrad nests, created by boron extraction from B-SSZ-70 at various other locations, are not stable and silanol condensation occurs. Infrared spectroscopic investigations of adsorbed pyridine indicate an enhanced acidity of the silanol triads, suggesting important implications in catalysis.

4.
Inorg Chem ; 58(21): 14338-14348, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31638393

ABSTRACT

Although oxygen is a common ligand in supported metal catalysts, its coordination has been challenging to elucidate. We now characterize a diiridium complex that has been previously shown by X-ray diffraction crystallography to incorporate a µ-η1:η1-peroxo ligand. We observe markedly enhanced intensity at 788 cm-1 in the Raman spectrum of this complex, which is a consequence of bonding of the peroxo ligand but does not shift upon 18O labeling. Electronic structure calculations at the density functional theory level suggest that this increase in Raman intensity results from bands associated with rocking of CH2 substituents directly attached to P(Ph)2 groups coupling with the O-O band. These results provide part of the foundation for understanding oxygen ligands on a silica-supported tetrairidium carbonyl cluster stabilized with bulky electron-donating phosphine ligands [p-tert-butyl-calix[4]arene(OPr)3(OCH2PPh2) (Ph = phenyl; Pr = propyl)]. Reaction of the cluster with O2 also led to the growing in of a Raman band at 788 cm-1, similar to that in the diiridium complex and also assigned to the bonding of a bridging peroxo ligand. Infrared spectra recorded as the supported cluster reacted in sequential exposures to (i) H2, (ii) O2, (iii) H2, and (iv) CO indicate that two bridging peroxo ligands were bonded irreversibly per tetrairidium cluster, replacing bridging carbonyl ligands without altering either the cluster frame or the phosphine ligands. X-ray absorption near edge and infrared spectra include isosbestic points signifying a stoichiometrically simple reaction of the cluster with O2, and mass spectra of the effluent gas show that CO2 formed by oxidation of one terminal CO ligand per cluster as H2 (and not H2O) formed, evidence that hydride ligands had been present on the cluster following treatment (i). The understanding of how O2 reacts with the metal polyhedron provides a foundation for understanding of how oxidation catalysis may proceed on the surfaces of noble metals.

5.
J Am Chem Soc ; 141(17): 7090-7106, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30955340

ABSTRACT

The effect of dynamic reorganization and confinement of isolated TiIV catalytic centers supported on silicates is investigated for olefin epoxidation. Active sites consist of grafted single-site calix[4]arene-TiIV centers or their calcined counterparts. Their location is synthetically controlled to be either unconfined at terminal T-atom positions (denoted as type-(i)) or within confining 12-MR pockets (denoted as type-(ii); diameter ∼7 Å, volume ∼185 Å3) composed of hemispherical cavities on the external surface of zeotypes with *-SVY topology. Electronic structure calculations (density functional theory) indicate that active sites consist of cooperative assemblies of TiIV centers and silanols. When active sites are located at unconfined type-(i) environments, the rate constants for cyclohexene epoxidation (323 K, 0.05 mM TiIV, 160 mM cyclohexene, 24 mM tert-butyl hydroperoxide) are 9 ± 2 M-2 s-1; whereas within confining type-(ii) 12-MR pockets, there is a ∼5-fold enhancement to 48 ± 8 M-2 s-1. When a mixture of both environments is initially present in the catalyst resting state, the rate constants reflect confining environments exclusively (40 ± 11 M-2 s-1), indicating that dynamic reorganization processes lead to the preferential location of active sites within 12-MR pockets. While activation enthalpies are Δ H‡app = 43 ± 1 kJ mol-1 irrespective of active site location, confining environments exhibit diminished entropic barriers (Δ S‡app = -68 J mol-1 K-1 for unconfined type-(i) vs -56 J mol-1 K-1 for confining type-(ii)), indicating that confinement leads to more facile association of reactants at active sites to form transition state structures (volume ∼ 225 Å3). These results open new opportunities for controlling reactivity on surfaces through partial confinement on shallow external-surface pockets, which are accessible to molecules that are too bulky to benefit from traditional confinement within micropores.


Subject(s)
Alkenes/chemistry , Cyclohexenes/chemistry , Epoxy Compounds/chemical synthesis , Titanium/chemistry , Calixarenes/chemistry , Catalysis , Density Functional Theory , Models, Chemical , Thermodynamics , tert-Butylhydroperoxide/chemistry
6.
J Am Chem Soc ; 141(9): 4010-4015, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30736668

ABSTRACT

Although essentially molecular noble metal species provide active sites and highly tunable platforms for the design of supported catalysts, the susceptibility of the metals to reduction and aggregation and the consequent loss of catalytic activity and selectivity limit opportunities for their application. Here, we demonstrate a new construct to stabilize supported molecular noble-metal catalysts, taking advantage of sterically bulky ligands on the metal that serve as surrogate supports and isolate the active sites under conditions involving steady-state catalytic turnover in a reducing environment. The result is demonstrated with an iridium pair-site catalyst incorporating P-bridging calix[4]arene ligands dispersed on siliceous supports, chosen as prototypes because they offer weakly interacting surfaces on which metal aggregation is prone to occur. This catalyst was used for the hydrogenation of ethylene in a flow reactor. Atomic-resolution imaging of the Ir centers and spectra of the catalyst before and after use show that the metals resisted aggregation and deactivation, remaining atomically dispersed and accessible for catalysis. This strategy thus allows the stabilization of the catalysts even when they are weakly anchored to supports.

7.
ACS Appl Mater Interfaces ; 10(46): 39670-39678, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30398841

ABSTRACT

The separation of aromatic contaminants from sugar-aromatic aqueous mixtures is required in second-generation biorefineries because aromatic compounds deactivate (bio)catalysts typically involved in upgrading lignocellulosic biomass to fuels and chemicals. This separation remains challenging, however, because of the degree of molecular recognition needed to sequester dilute aromatic impurities from concentrated sugar streams. Herein, we demonstrate that hydrophobic cavities of p- tert-butylcalix[4]arene macrocycles grafted on amorphous silica (calix/SiO2) perform this separation selectively and efficiently by acting as selective molecular hosts that adsorb aromatic compounds (5-hydroxymethylfurfural, vanillin, and vanillic acid) while excluding monomeric sugar (glucose chosen as a prototypical model) in aqueous mixtures. By comparing calix/SiO2 to a range of organically modified SiO2 surfaces and other porous adsorbents, we demonstrate that the organization of hydrophobic functional groups within discrete nests consisting of calixarene cavities is crucial for facilitating the adsorption of aromatics. Density functional theory calculations of the host-guest complex indicate that adsorption is brought about by weak dispersive (van der Waals) interactions between tert-butyl upper-rim substituents in calixarene hosts and aromatic guests. Calix/SiO2 can be repeatedly reused, demonstrating its viability as an adsorbent within a continuous biorefining process. These calix/SiO2 adsorbents expand the palette of materials available for selective sugar-aromatic separations, which until now have been limited to pyrene-based sites of metal-organic framework NU-1000, and demonstrate that sites consisting of relatively simple hydrophobic tert-butyl substituents organized around a hemispherical molecular cavity provide a sufficient degree of molecular recognition for performing this separation selectively.

8.
Dalton Trans ; 47(42): 15082-15090, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30303227

ABSTRACT

We report a scalable delamination procedure for a SSZ-70-framework layered-zeolite precursor, which for the first time does not involve either sonication or long-chain surfactants. Our approach instead relies on the mild heating of layered zeolite precursor B-SSZ-70(P) in an aqueous solution containing Zn(NO3)2 and tetrabutylammonium fluoride. Powder X-ray diffraction data are consistent with a loss of long-range order along the z-direction, while 29Si MAS NMR spectroscopy demonstrates preservation of the zeolite framework crystallinity during delamination. The resulting delaminated material, DZ-2, possesses 1.4-fold higher external surface area relative to the nondelaminated three-dimensional zeolite B-SSZ-70, based on N2 physisorption data at 77 K. DZ-2 was functionalized with cationic Ti heteroatoms to synthesize Ti-DZ-2 via exchange with framework B. Ti-DZ-2 contains isolated titanium centers in its crystalline framework, as shown by UV-Vis spectroscopy. The generality of the synthetic delamination approach and catalyst synthesis is demonstrated with the synthesis of delaminated material DZ-3, which is derived from layered zeolite precursor ERB-1(P) with MWW framework topology. Upon catalytic testing for the epoxidation of 1-octene with ethylbenzene hydroperoxide as oxidant, under harsh tail-end conditions that deactivate amorphous Ti-silica-based catalysts, Ti-DZ-2 exhibits the highest per-Ti-site activity, selectivity, and stability for 1-octene epoxidation of all catalysts investigated. This testing includes the prior benchmark delaminated zeolite catalyst in this area, Ti-UCB-4, which possesses similar external surface area to Ti-DZ-2 but requires sonication and long-chain surfactants for its synthesis. The synthesis of DZ-2 is the first example of an economical delamination of layered zeolite precursor SSZ-70(P) and opens up new doors to the development of delaminated zeolites as commercial catalysts.

9.
J Am Chem Soc ; 140(15): 4956-4960, 2018 04 18.
Article in English | MEDLINE | ID: mdl-29565124

ABSTRACT

The effect of outer-sphere environment on alkene epoxidation catalysis using an organic hydroperoxide oxidant is demonstrated for calix[4]arene-TiIV single-sites grafted on amorphous vs crystalline delaminated zeotype (UCB-4) silicates as supports. A chelating calix[4]arene macrocyclic ligand helps enforce a constant TiIV inner-sphere, as characterized by UV-visible and X-ray absorption spectroscopies, thus enabling the rigorous comparison of outer-sphere environments across different siliceous supports. These outer-sphere environments are characterized by solid-state 1H NMR spectroscopy to comprise proximally organized silanols confined within 12 membered-ring cups in crystalline UCB-4, and are responsible for up to 5-fold enhancements in rates of epoxidation by TiIV centers.

10.
Nat Chem ; 4(12): 1030-6, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23174984

ABSTRACT

New porous materials such as zeolites, metal-organic frameworks and mesostructured oxides are of immense practical utility for gas storage, separations and heterogeneous catalysis. Their extended pore structures enable selective uptake of molecules or can modify the product selectivity (regioselectivity or enantioselectivity) of catalyst sites contained within. However, diffusion within pores can be problematic for biomass and fine chemicals, and not all catalyst classes can be readily synthesized with pores of the correct dimensions. Here, we present a novel approach that adds reactant selectivity to existing, non-porous oxide catalysts by first grafting the catalyst particles with single-molecule sacrificial templates, then partially overcoating the catalyst with a second oxide through atomic layer deposition. This technique is used to create sieving layers of Al(2)O(3) (thickness, 0.4-0.7 nm) with 'nanocavities' (<2 nm in diameter) on a TiO(2) photocatalyst. The additional layers result in selectivity (up to 9:1) towards less hindered reactants in otherwise unselective, competitive photocatalytic oxidations and transfer hydrogenations.


Subject(s)
Oxides/chemistry , Aluminum Oxide/chemistry , Catalysis , Microscopy, Electron, Transmission , Models, Molecular , Nanotechnology , Photochemistry , Porosity , Stereoisomerism , Surface Properties , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...