Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(23): 38443-38456, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38017951

ABSTRACT

Squeezed light is injected into the dark port of gravitational wave interferometers, in order to reduce the quantum noise. A fraction of the interferometer output light can reach the OPO due to sub-optimal isolation of the squeezing injection path. This backscattered light interacts with squeezed light generation process, introducing additional measurement noise. We present a theoretical description of the noise coupling mechanism and we prove the model with experimental results. We propose a control scheme to achieve a de-amplification of the backscattered light inside the OPO with a consequent reduction of the noise caused by it. The scheme was implemented at the GEO 600 detector and has proven to be crucial in maintaining a good level of quantum noise reduction of the interferometer for high parametric gain of the OPO. In particular, the mitigation of the backscattered light noise helped in reaching 6 dB of quantum noise reduction [Phys. Rev. Lett.126, 041102 (2021)10.1103/PhysRevLett.126.041102]. We show that the impact of backscattered-light-induced noise on the squeezing performance is phenomenologically equivalent to increased phase noise of the squeezing angle control. The results discussed in this paper provide a way for a more accurate estimation of the residual phase noise of the squeezed light field. Finally, the knowledge of the backscattered light noise coupling mechanism is a useful tool to inform the design of the squeezing injection path in terms of path stability and optical isolation.

2.
Phys Rev Lett ; 128(12): 121101, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35394316

ABSTRACT

Low-mass (sub-eV) scalar field dark matter may induce apparent oscillations of fundamental constants, resulting in corresponding oscillations of the size and the index of refraction of solids. Laser interferometers are highly sensitive to changes in the size and index of refraction of the main beam splitter. Using cross-correlated data of the Fermilab Holometer instrument, which consists of twin colocated 40-m arm length power-recycled interferometers, we investigate the possible existence of scalar field dark matter candidates in the mass range between 1.6×10^{-12} eV and 1.0×10^{-7} eV. We set new upper limits for the coupling parameters of scalar field dark matter, improving on limits from previous direct searches by up to 3 orders of magnitude.

3.
Nature ; 600(7889): 424-428, 2021 12.
Article in English | MEDLINE | ID: mdl-34912085

ABSTRACT

The nature of dark matter remains unknown to date, although several candidate particles are being considered in a dynamically changing research landscape1. Scalar field dark matter is a prominent option that is being explored with precision instruments, such as atomic clocks and optical cavities2-8. Here we describe a direct search for scalar field dark matter using a gravitational-wave detector, which operates beyond the quantum shot-noise limit. We set new upper limits on the coupling constants of scalar field dark matter as a function of its mass, by excluding the presence of signals that would be produced through the direct coupling of this dark matter to the beam splitter of the GEO600 interferometer. These constraints improve on bounds from previous direct searches by more than six orders of magnitude and are, in some cases, more stringent than limits obtained in tests of the equivalence principle by up to four orders of magnitude. Our work demonstrates that scalar field dark matter can be investigated or constrained with direct searches using gravitational-wave detectors and highlights the potential of quantum-enhanced interferometry for dark matter detection.

4.
Phys Rev Lett ; 126(4): 041102, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33576646

ABSTRACT

Photon shot noise, arising from the quantum-mechanical nature of the light, currently limits the sensitivity of all the gravitational wave observatories at frequencies above one kilohertz. We report a successful application of squeezed vacuum states of light at the GEO 600 observatory and demonstrate for the first time a reduction of quantum noise up to 6.03±0.02 dB in a kilometer scale interferometer. This is equivalent at high frequencies to increasing the laser power circulating in the interferometer by a factor of 4. Achieving this milestone, a key goal for the upgrades of the advanced detectors required a better understanding of the noise sources and losses and implementation of robust control schemes to mitigate their contributions. In particular, we address the optical losses from beam propagation, phase noise from the squeezing ellipse, and backscattered light from the squeezed light source. The expertise gained from this work carried out at GEO 600 provides insight toward the implementation of 10 dB of squeezing envisioned for third-generation gravitational wave detectors.

6.
Phys Rev Lett ; 120(14): 141102, 2018 Apr 06.
Article in English | MEDLINE | ID: mdl-29694109

ABSTRACT

We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrade's astrophysical applications. We present a comprehensive study of the detector's technical noises and show that with technologies currently under development, such as interferometrically sensed seismometers and balanced-homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and thermal noises down to 5 Hz. These technologies are also directly applicable to the future generation of detectors. We go on to consider this upgrade's implications for the astrophysical output of an aLIGO-like detector. A single LIGO-LF can detect mergers of stellar-mass black holes (BHs) out to a redshift of z≃6 and would be sensitive to intermediate-mass black holes up to 2000 M_{⊙}. The detection rate of merging BHs will increase by a factor of 18 compared to aLIGO. Additionally, for a given source the chirp mass and total mass can be constrained 2 times better than aLIGO and the effective spin 3-5 times better than aLIGO. Furthermore, LIGO-LF enables the localization of coalescing binary neutron stars with an uncertainty solid angle 10 times smaller than that of aLIGO at 30 Hz and 4 times smaller when the entire signal is used. LIGO-LF also significantly enhances the probability of detecting other astrophysical phenomena including the tidal excitation of neutron star r modes and the gravitational memory effects.

7.
Phys Rev Lett ; 118(15): 151102, 2017 Apr 14.
Article in English | MEDLINE | ID: mdl-28452534

ABSTRACT

Interferometric gravitational wave detectors operate with high optical power in their arms in order to achieve high shot-noise limited strain sensitivity. A significant limitation to increasing the optical power is the phenomenon of three-mode parametric instabilities, in which the laser field in the arm cavities is scattered into higher-order optical modes by acoustic modes of the cavity mirrors. The optical modes can further drive the acoustic modes via radiation pressure, potentially producing an exponential buildup. One proposed technique to stabilize parametric instability is active damping of acoustic modes. We report here the first demonstration of damping a parametrically unstable mode using active feedback forces on the cavity mirror. A 15 538 Hz mode that grew exponentially with a time constant of 182 sec was damped using electrostatic actuation, with a resulting decay time constant of 23 sec. An average control force of 0.03 nN was required to maintain the acoustic mode at its minimum amplitude.

8.
Opt Express ; 24(18): 20107-18, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-27607619

ABSTRACT

Current laser-interferometric gravitational wave detectors employ a self-homodyne readout scheme where a comparatively large light power (5-50 mW) is detected per photosensitive element. For best sensitivity to gravitational waves, signal levels as low as the quantum shot noise have to be measured as accurately as possible. The electronic noise of the detection circuit can produce a relevant limit to this accuracy, in particular when squeezed states of light are used to reduce the quantum noise. We present a new electronic circuit design reducing the electronic noise of the photodetection circuit in the audio band. In the application of this circuit at the gravitational-wave detector GEO 600 the shot-noise to electronic noise ratio was permanently improved by a factor of more than 4 above 1 kHz, while the dynamic range was improved by a factor of 7. The noise equivalent photocurrent of the implemented photodetector and circuit is about 5µA/Hz above 1 kHz with a maximum detectable photocurrent of 20 mA. With the new circuit, the observed squeezing level in GEO 600 increased by 0.2 dB. The new circuit also creates headroom for higher laser power and more squeezing to be observed in the future in GEO 600 and is applicable to other optics experiments.

9.
Phys Rev Lett ; 114(16): 161102, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25955042

ABSTRACT

Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this Letter, we describe the first observation of parametric instability in a gravitational wave detector, and the means by which it has been removed as a barrier to progress.

10.
Appl Opt ; 45(28): 7269-72, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-16983413

ABSTRACT

Low-absorption optics made of OH-reduced fused silica are a key technology for future gravitational wave detectors such as the Advanced LIGO. We developed a sensitive method to measure the absorption inside the beam splitter of the GEO 600, taking advantage of the effect of thermal lensing. Using this method, we derived a bulk absorption of less than 0.25 ppm/cm for a piece of Suprasil 311 SV at a wavelength of 1064 nm. To the best of our knowledge, this is the lowest value of light absorption inside fused silica reported so far in the literature.

11.
Appl Opt ; 43(9): 1938-45, 2004 Mar 20.
Article in English | MEDLINE | ID: mdl-15065724

ABSTRACT

The automatic alignment system for the two suspended, triangular mode-cleaner cavities of the gravitational wave detector GEO 600 has been in continuous operation since the spring of 2001. A total of 20 angular degrees of freedom are controlled by feedback loops with almost no manual alignment having been required since installation. Error signals for the eight most important degrees of freedom are obtained with the differential wave-front sensing technique. We describe the sensing system, the control topology, and the performance of the automatic alignment system. A continuous locking stretch of more than 120 h has been achieved.

SELECTION OF CITATIONS
SEARCH DETAIL
...