Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Am Chem Soc ; 140(47): 16198-16205, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30383962

ABSTRACT

Carbon monoxide is widely known to poison Pt during heterogeneous catalysis owing to its strong donor-acceptor binding ability. Herein, we report a counterintuitive phenomenon of this general paradigm when the size of Pt decreases to an atomic level, namely, the CO-promoting Pt electrocatalysis toward hydrogen evolution reactions (HER). Compared to pristine atomic Pt catalyst, reduction current on a CO-modified catalyst increases significantly. Operando mass spectroscopy and electrochemical analyses demonstrate that the increased current arises due to enhanced H2 evolution, not additional CO reduction. Through structural identification of catalytic sites and computational analysis, we conclude that CO-ligation on the atomic Pt facilitates Hads formation via water dissociation. This counterintuitive effect exemplifies the fully distinct characteristics of atomic Pt catalysts from those of bulk Pt, and offers new insights for tuning the activity of similar classes of catalysts.

2.
Angew Chem Int Ed Engl ; 57(9): 2488-2491, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29219237

ABSTRACT

Understanding the pathways of catalyst degradation during the oxygen evolution reaction is a cornerstone in the development of efficient and stable electrolyzers, since even for the most promising Ir based anodes the harsh reaction conditions are detrimental. The dissolution mechanism is complex and the correlation to the oxygen evolution reaction itself is still poorly understood. Here, by coupling a scanning flow cell with inductively coupled plasma and online electrochemical mass spectrometers, we monitor the oxygen evolution and degradation products of Ir and Ir oxides in situ. It is shown that at high anodic potentials several dissolution routes become possible, including formation of gaseous IrO3 . On the basis of experimental data, possible pathways are proposed for the oxygen-evolution-triggered dissolution of Ir and the role of common intermediates for these reactions is discussed.

3.
Nat Commun ; 7: 13164, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27767178

ABSTRACT

The recycling of precious metals, for example, platinum, is an essential aspect of sustainability for the modern industry and energy sectors. However, due to its resistance to corrosion, platinum-leaching techniques rely on high reagent consumption and hazardous processes, for example, boiling aqua regia; a mixture of concentrated nitric and hydrochloric acid. Here we demonstrate that complete dissolution of metallic platinum can be achieved by induced surface potential alteration, an 'electrode-less' process utilizing alternatively oxidative and reductive gases. This concept for platinum recycling exploits the so-called transient dissolution mechanism, triggered by a repetitive change in platinum surface oxidation state, without using any external electric current or electrodes. The effective performance in non-toxic low-concentrated acid and at room temperature is a strong benefit of this approach, potentially rendering recycling of industrial catalysts, including but not limited to platinum-based systems, more sustainable.

4.
Angew Chem Int Ed Engl ; 54(43): 12753-7, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26314711

ABSTRACT

Fundamental understanding of non-precious metal catalysts for the oxygen reduction reaction (ORR) is the nub for the successful replacement of noble Pt in fuel cells and, therefore, of central importance for a technological breakthrough. Herein, the degradation mechanisms of a model high-performance Fe-N-C catalyst have been studied with online inductively coupled plasma mass spectrometry (ICP-MS) and differential electrochemical mass spectroscopy (DEMS) coupled to a modified scanning flow cell (SFC) system. We demonstrate that Fe leaching from iron particles occurs at low potential (<0.7 V) without a direct adverse effect on the ORR activity, while carbon oxidation occurs at high potential (>0.9 V) with a destruction of active sites such as FeNx Cy species. Operando techniques combined with identical location-scanning transmission electron spectroscopy (IL-STEM) identify that the latter mechanism leads to a major ORR activity decay, depending on the upper potential limit and electrolyte temperature. Stable operando potential windows and operational strategies are suggested for avoiding degradation of Fe-N-C catalysts in acidic medium.

5.
Bioelectrochemistry ; 102: 50-5, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25486337

ABSTRACT

Reduction of carbon dioxide to methane by microorganisms attached to electrodes is a promising process in terms of renewable energy storage strategies. However the efficient and specific electrosynthesis of methane by methanogenic archaea on cathodes needs fundamental investigations of the electron transfer mechanisms at the microbe-electrode interface without the addition of artificial electron mediators. Using well-defined electrochemical techniques directly coupled to gas chromatography and surface analysis by scanning electron microscopy, it is shown that a pure culture of the marine lithoautotrophic Methanobacterium-like archaeon strain IM1 is capable to utilize electrons from graphite cathodes for a highly selective production of methane, without hydrogen serving as a cathode-generated electron carrier. Microbial electrosynthesis of methane with cultures of strain IM1 is achieved at a set potential of -0.4V vs. SHE and is characterized by a coulomb efficiency of 80%, with rates reaching 350 nmol d(-1) cm(-2) after 23 days of incubation. Moreover, potential step measurements reveal a biologically catalyzed hydrogen production at potentials more positive than abiotic hydrogen evolution on graphite, indicating that an excessive supply of electrons to strain IM1 results in proton reduction rather than in a further increase of methane production.


Subject(s)
Autotrophic Processes , Bioelectric Energy Sources/microbiology , Methane/biosynthesis , Methanobacterium/growth & development , Methanobacterium/metabolism , Minerals/metabolism , Carbon Dioxide/metabolism , Culture Techniques , Electrochemistry , Electrodes , Methane/chemistry
6.
Rev Sci Instrum ; 85(10): 104101, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25362419

ABSTRACT

In this work the online coupling of a miniaturized electrochemical scanning flow cell (SFC) to a mass spectrometer is introduced. The system is designed for the determination of reaction products in dependence of the applied potential and/or current regime as well as fast and automated change of the sample. The reaction products evaporate through a hydrophobic PTFE membrane into a small vacuum probe, which is positioned only 50-100 µm away from the electrode surface. The probe is implemented into the SFC and directly connected to the mass spectrometer. This unique configuration enables fast parameter screening for complex electrochemical reactions, including investigation of operation conditions, composition of electrolyte, and material composition. The technical developments of the system are validated by initial measurements of hydrogen evolution during water electrolysis and electrochemical reduction of CO2 to various products, showcasing the high potential for systematic combinatorial screening by this approach.

SELECTION OF CITATIONS
SEARCH DETAIL