Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(10): 113128, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37742194

ABSTRACT

Neuronal swelling during cytotoxic edema is triggered by Na+ and Cl- entry and is Ca2+ independent. However, the causes of neuronal death during swelling are unknown. Here, we investigate the role of large-conductance Pannexin-1 (Panx1) channels in neuronal death during cytotoxic edema. Panx1 channel inhibitors reduce and delay neuronal death in swelling triggered by voltage-gated Na+ entry with veratridine. Neuronal swelling causes downstream production of reactive oxygen species (ROS) that opens Panx1 channels. We confirm that ROS activates Panx1 currents with whole-cell electrophysiology and find scavenging ROS is neuroprotective. Panx1 opening and subsequent ATP release attract microglial processes to contact swelling neurons. Depleting microglia using the CSF1 receptor antagonist PLX3397 or blocking P2Y12 receptors exacerbates neuronal death, suggesting that the Panx1-ATP-dependent microglia contacts are neuroprotective. We conclude that cytotoxic edema triggers oxidative stress in neurons that opens Panx1 to trigger death but also initiates neuroprotective feedback mediated by microglia contacts.


Subject(s)
Connexins , Microglia , Microglia/metabolism , Reactive Oxygen Species/metabolism , Connexins/metabolism , Cell Death , Adenosine Triphosphate/metabolism
2.
Cell Rep ; 41(4): 111556, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36288701

ABSTRACT

Intracellular chloride ion concentration ([Cl-]i) homeostasis is critical for excitatory/inhibitory balance and volume regulation in neurons. We quantitatively map spatiotemporal dendritic [Cl-]i dynamics during N-methyl-d-aspartate (NMDA) excitotoxicity to determine how Cl- changes contribute to localized dendritic swelling (blebbing) in stroke-like conditions. Whole-cell patch clamp electrophysiology combined with simultaneous fluorescence lifetime imaging (FLIM) of the Cl- dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE; MQAE-FLIM) reliably report resting and dynamic [Cl-]i shifts in dendrites. NMDA application generates spatially restricted and persistent high [Cl-]i subdomains at dendritic blebs in a process that requires Ca2+ influx and the subsequent opening of small-conductance Ca2+-activated K+ (SK) channels. We propose sustained and localized K+ efflux increased extracellular K+ concentrations ([K+]o) sufficiently at discrete regions to reverse K+-Cl- cotransporter (KCC2) transport and trigger synaptic swelling. Together, our data establish a mechanism for KCC2 to generate pathological [Cl-]i microdomains in blebbing with relevance for multiple neurological disorders.


Subject(s)
Chlorides , Symporters , Chlorides/metabolism , N-Methylaspartate , Bromides , Neurons/metabolism
3.
Commun Biol ; 5(1): 900, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36056095

ABSTRACT

Neuronal activation is fundamental to information processing by the brain and requires mitochondrial energy metabolism. Mitochondrial Ca2+ uptake by the mitochondrial Ca2+ uniporter (MCU) has long been implicated in the control of energy metabolism and intracellular Ca2+ signalling, but its importance to neuronal function in the brain remains unclear. Here, we used in situ electrophysiology and two-photon imaging of mitochondrial Ca2+, cytosolic Ca2+, and NAD(P)H to test the relevance of MCU activation to pyramidal neuron Ca2+ signalling and energy metabolism during action potential firing. We demonstrate that mitochondrial Ca2+ uptake by the MCU is tuned to enhanced firing rate and the strength of this relationship varied between neurons of discrete brain regions. MCU activation promoted electron transport chain activity and chemical reduction of NAD+ to NADH. Moreover, Ca2+ buffering by mitochondria attenuated cytosolic Ca2+ signals and thereby reduced the coupling between activity and the slow afterhyperpolarization, a ubiquitous regulator of excitability. Collectively, we demonstrate that the MCU is engaged by accelerated spike frequency to facilitate neuronal activity through simultaneous control of energy metabolism and excitability. As such, the MCU is situated to promote brain functions associated with high frequency signalling and may represent a target for controlling excessive neuronal activity.


Subject(s)
Calcium Channels , Mitochondrial Membrane Transport Proteins , Action Potentials , Calcium/metabolism , Calcium Channels/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , NAD/metabolism , Pyramidal Cells/metabolism
4.
Glia ; 64(12): 2093-2103, 2016 12.
Article in English | MEDLINE | ID: mdl-27479868

ABSTRACT

Astrocytes display complex morphologies with an array of fine extensions extending from the soma and the primary thick processes. Until the use of genetically encoded calcium indicators (GECIs) selectively expressed in astrocytes, Ca2+ signaling was only examined in soma and thick primary processes of astrocytes where Ca2+ -sensitive fluorescent dyes could be imaged. GECI imaging in astrocytes revealed a previously unsuspected pattern of spontaneous Ca2+ transients in fine processes that has not been observed without chronic expression of GECIs, raising potential concerns about the effects of GECI expression. Here, we perform two-photon imaging of Ca2+ transients in adult CA1 hippocampal astrocytes using a new single-cell patch-loading strategy to image Ca2+ -sensitive fluorescent dyes in the cytoplasm of fine processes. We observed that astrocyte fine processes exhibited a high frequency of spontaneous Ca2+ transients whereas astrocyte soma rarely showed spontaneous Ca2+ oscillations similar to previous reports using GECIs. We exploited this new approach to show these signals were independent of neuronal spiking, metabotropic glutamate receptor (mGluR) activity, TRPA1 channels, and L- or T-type voltage-gated calcium channels. Removal of extracellular Ca2+ almost completely and reversibly abolished the spontaneous signals while IP3 R2 KO mice also exhibited spontaneous and compartmentalized signals, suggesting they rely on influx of extracellular Ca2+ . The Ca2+ influx dependency of the spontaneous signals in patch-loaded astrocytes was also observed in astrocytes expressing GCaMP3, further highlighting the presence of Ca2+ influx pathways in astrocytes. The mechanisms underlying these localized Ca2+ signals are critical for understanding how astrocytes regulate important functions in the adult brain. GLIA 2016;64:2093-2103.


Subject(s)
Astrocytes/metabolism , Calcium/metabolism , Hippocampus/cytology , Action Potentials/drug effects , Animals , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Calcium Signaling/drug effects , Carbenoxolone/pharmacology , Chromones/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Transporter 1/genetics , Excitatory Amino Acid Transporter 1/metabolism , Female , In Vitro Techniques , Inositol 1,4,5-Trisphosphate Receptors/genetics , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Membrane Microdomains/drug effects , Membrane Microdomains/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pyridines/pharmacology , TRPA1 Cation Channel/genetics , TRPA1 Cation Channel/metabolism
5.
J Neurophysiol ; 115(5): 2615-34, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26864756

ABSTRACT

After Ca(2+) influx, mitochondria can sequester Ca(2+) and subsequently release it back into the cytosol. This form of Ca(2+)-induced Ca(2+) release (CICR) prolongs Ca(2+) signaling and can potentially mediate activity-dependent plasticity. As Ca(2+) is required for its subsequent release, Ca(2+) removal systems, like the plasma membrane Ca(2+)-ATPase (PMCA), could impact CICR. Here we examine such a role for the PMCA in the bag cell neurons of Aplysia californica CICR is triggered in these neurons during an afterdischarge and is implicated in sustaining membrane excitability and peptide secretion. Somatic Ca(2+) was measured from fura-PE3-loaded cultured bag cell neurons recorded under whole cell voltage clamp. Voltage-gated Ca(2+) influx was elicited with a 5-Hz, 1-min train, which mimics the fast phase of the afterdischarge. PMCA inhibition with carboxyeosin or extracellular alkalization augmented the effectiveness of Ca(2+) influx in eliciting mitochondrial CICR. A Ca(2+) compartment model recapitulated these findings and indicated that disrupting PMCA-dependent Ca(2+) removal increases CICR by enhancing mitochondrial Ca(2+) loading. Indeed, carboxyeosin augmented train-evoked mitochondrial Ca(2+) uptake. Consistent with their role on Ca(2+) dynamics, cell labeling revealed that the PMCA and mitochondria overlap with Ca(2+) entry sites. Finally, PMCA-dependent Ca(2+) extrusion did not impact endoplasmic reticulum-dependent Ca(2+) removal or release, despite the organelle residing near Ca(2+) entry sites. Our results demonstrate that Ca(2+) removal by the PMCA influences the propensity for stimulus-evoked CICR by adjusting the amount of Ca(2+) available for mitochondrial Ca(2+) uptake. This study highlights a mechanism by which the PMCA could impact activity-dependent plasticity in the bag cell neurons.


Subject(s)
Calcium Signaling , Mitochondria/metabolism , Neuroendocrine Cells/metabolism , Plasma Membrane Calcium-Transporting ATPases/metabolism , Animals , Aplysia , Calcium/metabolism , Calcium Channels/metabolism , Cells, Cultured , Endoplasmic Reticulum/metabolism
6.
J Neurosci ; 35(6): 2747-65, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25673863

ABSTRACT

It is unknown whether neurons can dynamically control the capacity for secretion by promptly changing the number of plasma membrane voltage-gated Ca(2+) channels. To address this, we studied peptide release from the bag cell neurons of Aplysia californica, which initiate reproduction by secreting hormone during an afterdischarge. This burst engages protein kinase C (PKC) to trigger the insertion of a covert Ca(2+) channel, Apl Cav2, alongside a basal channel, Apl Cav1. The significance of Apl Cav2 recruitment to secretion remains undetermined; therefore, we used capacitance tracking to assay secretion, along with Ca(2+) imaging and Ca(2+) current measurements, from cultured bag cell neurons under whole-cell voltage-clamp. Activating PKC with the phorbol ester, PMA, enhanced Ca(2+) entry, and potentiated stimulus-evoked secretion. This relied on channel insertion, as it was occluded by preventing Apl Cav2 engagement with prior whole-cell dialysis or the cytoskeletal toxin, latrunculin B. Channel insertion reduced the stimulus duration and/or frequency required to initiate secretion and strengthened excitation-secretion coupling, indicating that Apl Cav2 accesses peptide release more readily than Apl Cav1. The coupling of Apl Cav2 to secretion also changed with behavioral state, as Apl Cav2 failed to evoke secretion in silent neurons from reproductively inactive animals. Finally, PKC also acted secondarily to enhance prolonged exocytosis triggered by mitochondrial Ca(2+) release. Collectively, our results suggest that bag cell neurons dynamically elevate Ca(2+) channel abundance in the membrane to ensure adequate secretion during the afterdischarge.


Subject(s)
Aplysia/physiology , Calcium Channels/metabolism , Cell Membrane/metabolism , Protein Kinase C/physiology , Actins/drug effects , Animals , Calcium/metabolism , Cytoskeleton/drug effects , Enzyme Activation/physiology , Exocytosis/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Neurons/metabolism , Patch-Clamp Techniques , Recruitment, Neurophysiological , Tetradecanoylphorbol Acetate/pharmacology
7.
J Neurophysiol ; 113(3): 808-21, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25411460

ABSTRACT

Electrical transmission is a dynamically regulated form of communication and key to synchronizing neuronal activity. The bag cell neurons of Aplysia are a group of electrically coupled neuroendocrine cells that initiate ovulation by secreting egg-laying hormone during a prolonged period of synchronous firing called the afterdischarge. Accompanying the afterdischarge is an increase in intracellular Ca2+ and the activation of protein kinase C (PKC). We used whole cell recording from paired cultured bag cell neurons to demonstrate that electrical coupling is regulated by both Ca2+ and PKC. Elevating Ca2+ with a train of voltage steps, mimicking the onset of the afterdischarge, decreased junctional current for up to 30 min. Inhibition was most effective when Ca2+ entry occurred in both neurons. Depletion of Ca2+ from the mitochondria, but not the endoplasmic reticulum, also attenuated the electrical synapse. Buffering Ca2+ with high intracellular EGTA or inhibiting calmodulin kinase prevented uncoupling. Furthermore, activating PKC produced a small but clear decrease in junctional current, while triggering both Ca2+ influx and PKC inhibited the electrical synapse to a greater extent than Ca2+ alone. Finally, the amplitude and time course of the postsynaptic electrotonic response were attenuated after Ca2+ influx. A mathematical model of electrically connected neurons showed that excessive coupling reduced recruitment of the cells to fire, whereas less coupling led to spiking of essentially all neurons. Thus a decrease in electrical synapses could promote the afterdischarge by ensuring prompt recovery of electrotonic potentials or making the neurons more responsive to current spreading through the network.


Subject(s)
Action Potentials , Calcium Signaling , Calcium/metabolism , Neurons/physiology , Animals , Aplysia , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Electrical Synapses/metabolism , Electrical Synapses/physiology , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Models, Neurological , Neurons/drug effects , Neurons/metabolism , Protein Kinase C/antagonists & inhibitors , Synaptic Transmission
8.
J Neurosci ; 33(15): 6476-91, 2013 Apr 10.
Article in English | MEDLINE | ID: mdl-23575846

ABSTRACT

Although the contribution of Ca(2+) buffering systems can vary between neuronal types and cellular compartments, it is unknown whether distinct Ca(2+) sources within a neuron have different buffers. As individual Ca(2+) sources can have separate functions, we propose that each is handled by unique systems. Using Aplysia californica bag cell neurons, which initiate reproduction through an afterdischarge involving multiple Ca(2+)-dependent processes, we investigated the role of endoplasmic reticulum (ER) and mitochondrial sequestration, as well as extrusion via the plasma membrane Ca(2+)-ATPase (PMCA) and Na(+)/Ca(2+) exchanger, to the clearance of voltage-gated Ca(2+) influx, Ca(2+)-induced Ca(2+)-release (CICR), and store-operated Ca(2+) influx. Cultured bag cell neurons were filled with the Ca(2+) indicator, fura-PE3, to image Ca(2+) under whole-cell voltage clamp. A 5 Hz, 1 min train of depolarizing voltage steps elicited voltage-gated Ca(2+) influx followed by EGTA-sensitive CICR from the mitochondria. A compartment model of Ca(2+) indicated the effect of EGTA on CICR was due to buffering of released mitochondrial Ca(2+) rather than uptake competition. Removal of voltage-gated Ca(2+) influx was dominated by the mitochondria and PMCA, with no contribution from the Na(+)/Ca(2+) exchanger or sarcoplasmic/endoplasmic Ca(2+)-ATPase (SERCA). In contrast, CICR recovery was slowed by eliminating the Na(+)/Ca(2+) exchanger and PMCA. Last, store-operated influx, evoked by ER depletion, was removed by the SERCA and depended on the mitochondrial membrane potential. Our results demonstrate that distinct buffering systems are dedicated to particular Ca(2+) sources. In general, this may represent a means to differentially regulate Ca(2+)-dependent processes, and for Aplysia, influence how reproductive behavior is triggered.


Subject(s)
Aplysia , Calcium/metabolism , Neuroendocrine Cells/metabolism , Animals , Cells, Cultured , Egtazic Acid/pharmacology , Endoplasmic Reticulum/metabolism , Membrane Potentials/physiology , Mitochondria/metabolism , Molecular Imaging/methods , Neuroendocrine Cells/drug effects , Neurons/drug effects , Neurons/metabolism , Plasma Membrane Calcium-Transporting ATPases/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Calcium Exchanger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL