Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Glia ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780213

ABSTRACT

Microglia are innate immune cells in the brain and show exceptional heterogeneity. They are key players in brain physiological development regulating synaptic plasticity and shaping neuronal networks. In pathological disease states, microglia-induced synaptic pruning mediates synaptic loss and targeting microglia was proposed as a promising therapeutic strategy. However, the effect of microglia depletion and subsequent repopulation on dendritic spine density and neuronal function in the adult brain is largely unknown. In this study, we investigated whether pharmacological microglia depletion affects dendritic spine density after long-term permanent microglia depletion and after short-term microglia depletion with subsequent repopulation. Long-term microglia depletion using colony-stimulating-factor-1 receptor (CSF1-R) inhibitor PLX5622 resulted in increased overall spine density, especially of mushroom spines, and increased excitatory postsynaptic current amplitudes. Short-term PLX5622 treatment with subsequent repopulation of microglia had an opposite effect resulting in activated microglia with increased synaptic phagocytosis and consequently decreased spine density and reduced excitatory neurotransmission, while Barnes maze and elevated plus maze testing was unaffected. Moreover, RNA sequencing data of isolated repopulated microglia showed an activated and proinflammatory phenotype. Long-term microglia depletion might be a promising therapeutic strategy in neurological diseases with pathological microglial activation, synaptic pruning, and synapse loss. However, repopulation after depletion induces activated microglia and results in a decrease of dendritic spines possibly limiting the therapeutic application of microglia depletion. Instead, persistent modulation of pathological microglia activity might be beneficial in controlling synaptic damage.

2.
Nat Commun ; 15(1): 3074, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594255

ABSTRACT

Although DNA methylation data yields highly accurate age predictors, little is known about the dynamics of this quintessential epigenomic biomarker during lifespan. To narrow the gap, we investigate the methylation trajectories of male mouse colon at five different time points of aging. Our study indicates the existence of sudden hypermethylation events at specific stages of life. Precisely, we identify two epigenomic switches during early-to-midlife (3-9 months) and mid-to-late-life (15-24 months) transitions, separating the rodents' life into three stages. These nonlinear methylation dynamics predominantly affect genes associated with the nervous system and enrich in bivalently marked chromatin regions. Based on groups of nonlinearly modified loci, we construct a clock-like classifier STageR (STage of aging estimatoR) that accurately predicts murine epigenetic stage. We demonstrate the universality of our clock in an independent mouse cohort and with publicly available datasets.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Humans , Male , Animals , Mice , DNA Methylation/genetics , Aging/genetics , Longevity , Chromatin
3.
EMBO J ; 43(8): 1445-1483, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499786

ABSTRACT

Regulatory T (TREG) cells develop via a program orchestrated by the transcription factor forkhead box protein P3 (FOXP3). Maintenance of the TREG cell lineage relies on sustained FOXP3 transcription via a mechanism involving demethylation of cytosine-phosphate-guanine (CpG)-rich elements at conserved non-coding sequences (CNS) in the FOXP3 locus. This cytosine demethylation is catalyzed by the ten-eleven translocation (TET) family of dioxygenases, and it involves a redox reaction that uses iron (Fe) as an essential cofactor. Here, we establish that human and mouse TREG cells express Fe-regulatory genes, including that encoding ferritin heavy chain (FTH), at relatively high levels compared to conventional T helper cells. We show that FTH expression in TREG cells is essential for immune homeostasis. Mechanistically, FTH supports TET-catalyzed demethylation of CpG-rich sequences CNS1 and 2 in the FOXP3 locus, thereby promoting FOXP3 transcription and TREG cell stability. This process, which is essential for TREG lineage stability and function, limits the severity of autoimmune neuroinflammation and infectious diseases, and favors tumor progression. These findings suggest that the regulation of intracellular iron by FTH is a stable property of TREG cells that supports immune homeostasis and limits the pathological outcomes of immune-mediated inflammation.


Subject(s)
Apoferritins , T-Lymphocytes, Regulatory , Animals , Humans , Mice , Apoferritins/genetics , Apoferritins/metabolism , Cell Lineage/genetics , Cytosine/metabolism , Forkhead Transcription Factors , Iron/metabolism
4.
NPJ Regen Med ; 9(1): 10, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38424446

ABSTRACT

Skeletal muscle function crucially depends on innervation while repair of skeletal muscle relies on resident muscle stem cells (MuSCs). However, it is poorly understood how innervation affects MuSC properties and thereby regeneration of skeletal muscle. Here, we report that loss of innervation causes precocious activation of MuSCs concomitant with the expression of markers of myogenic differentiation. This aberrant activation of MuSCs after loss of innervation is accompanied by profound alterations on the mRNA and protein level. Combination of muscle injury with loss of innervation results in impaired regeneration of skeletal muscle including shifts in myogenic populations concomitant with delayed maturation of regenerating myofibers. We further demonstrate that loss of innervation leads to alterations in myofibers and their secretome, which then affect MuSC behavior. In particular, we identify an increased secretion of Osteopontin and transforming growth factor beta 1 (Tgfb1) by myofibers isolated from mice which had undergone sciatic nerve transection. The altered secretome results in the upregulation of early activating transcription factors, such as Junb, and their target genes in MuSCs. However, the combination of different secreted factors from myofibers after loss of innervation is required to cause the alterations observed in MuSCs after loss of innervation. These data demonstrate that loss of innervation first affects myofibers causing alterations in their secretome which then affect MuSCs underscoring the importance of proper innervation for MuSC functionality and regeneration of skeletal muscle.

5.
Immunology ; 172(1): 61-76, 2024 May.
Article in English | MEDLINE | ID: mdl-38272677

ABSTRACT

The Beige and Chediak-Higashi (BEACH) domain-containing, Neurobeachin-like 2 (NBEAL2) protein is a molecule with a molecular weight of 300 kDa. Inactivation of NBEAL2 by loss-of-function mutations in humans as well as deletion of the Nbeal2 gene in mice results in functional defects in cells of the innate immune system such as neutrophils, NK-cells, megakaryocytes, platelets and of mast cells (MCs). To investigate the detailed function of NBEAL2 in murine MCs we generated MCs from wild type (wt) and Nbeal2-/- mice, and deleted Nbeal2 by CRISPR/Cas9 technology in the murine mast cell line MC/9. We also predicted the structure of NBEAL2 to infer its function and to examine potential mechanisms for its association with interaction partners by using the deep learning-based method RoseTTAFold and the Pymol© software. The function of NBEAL2 was analysed by molecular and immunological techniques such as co-immunoprecipitation (co-IP) experiments, western blotting, enzyme-linked immunosorbent assay and flow cytometry. We identified RPS6 as an interaction partner of NBEAL2. Thereby, the NBEAL2/RPS6 complex formation is probably required to control the protein homeostasis of RPS6 in MCs. Consequently, inactivation of NBEAL2 leads to accumulation of strongly p90RSK-phosphorylated RPS6 molecules which results in the development of an abnormal MC phenotype characterised by prolonged growth factor-independent survival and in a pro-inflammatory MC-phenotype.


Subject(s)
Mast Cells , Ribosomal Protein S6 , Animals , Humans , Mice , Blood Platelets/metabolism , Blood Proteins/genetics , Blood Proteins/metabolism , Mast Cells/metabolism , Neutrophils/metabolism , Ribosomal Protein S6/metabolism
6.
Pathogens ; 12(12)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38133341

ABSTRACT

Plant-infecting RNA viruses from 30 families and floating genera, as well as a great number of uncultured as yet-unclassified plant-associated viruses have been described. Even so, the plant RNA virosphere is still underexplored. RNA extracted from enriched virus particles of 50 L water samples from the Teltow Canal and the Havel River in Berlin, Germany, was sequenced using Illumina next-generation sequencing. Sequences were searched for plant viruses with BLAST and DIAMOND. Phylogenetic analyses were conducted with IQ-TREE 2. Altogether, 647 virus sequences greater than 1 kb were detected and further analyzed. These data revealed the presence of accepted and novel viruses related to Albetovirus, Alphaflexiviridae, Aspiviridae, Bromoviridae, Endornaviridae, Partitiviridae, Potyviridae, Solemoviridae, Tombusviridae and Virgaviridae. The vast majority of the sequences were novel and could not be taxonomically assigned. Several tombus- and endorna-like viruses make use of alternative translation tables that suggest unicellular green algae, ciliates, or diplomonades as their hosts. The identification of 27 albeto-like satellite viruses increases available sequence data five-fold. Sixteen new poty-like viruses align with other poty-like viruses in a link that combines the Astroviridae and Potyviridae families. Further, the identification of viruses with peptidase A6-like and peptidase A21-like capsid proteins suggests horizontal gene transfer in the evolution of these viruses.

7.
Explor Target Antitumor Ther ; 4(3): 422-446, 2023.
Article in English | MEDLINE | ID: mdl-37455825

ABSTRACT

Aim: Recently, a tumor cell-platelet interaction was identified in different tumor entities, resulting in a transfer of tumor-derived RNA into platelets, named further "tumor-educated platelets (TEP)". The present pilot study aims to investigate whether such a tumor-platelet transfer of RNA occurs also in patients suffering from head and neck squamous cell carcinoma (HNSCC). Methods: Sequencing analysis of RNA derived from platelets of tumor patients (TPs) and healthy donors (HDs) were performed. Subsequently, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used for verification of differentially expressed genes in platelets from TPs and HDs in a second cohort of patients and HDs. Data were analyzed by applying bioinformatic tools. Results: Sequencing of RNA derived from the tumor as well as from platelets of TPs and HDs revealed 426 significantly differentially existing RNA, at which 406 RNA were more and 20 RNA less abundant in platelets from TPs in comparison to that of HDs. In TPs' platelets, abundantly existing RNA coding for 49 genes were detected, characteristically expressed in epithelial cells and RNA, the products of which are involved in tumor progression. Applying bioinformatic tools and verification on a second TP/HD cohort, collagen type I alpha 1 chain (COL1A1) and zinc finger protein 750 (ZNF750) were identified as the strongest potentially platelet-RNA-sequencing (RNA-seq)-based biomarkers for HNSCC. Conclusions: These results indicate a transfer of tumor-derived messenger RNA (mRNA) into platelets of HNSCC patients. Therefore, analyses of a patient's platelet RNA could be an efficient option for liquid biopsy in order to diagnose HNSCC or to monitor tumorigenesis as well as therapeutic responses at any time and in real time.

8.
Cells ; 12(9)2023 04 26.
Article in English | MEDLINE | ID: mdl-37174657

ABSTRACT

Primary liver cancer is the third leading cause of cancer-related death worldwide. An increasing body of evidence suggests that the Hippo tumor suppressor pathway plays a critical role in restricting cell proliferation and determining cell fate during physiological and pathological processes in the liver. Merlin (Moesin-Ezrin-Radixin-like protein) encoded by the NF2 (neurofibromatosis type 2) gene is an upstream regulator of the Hippo signaling pathway. Targeting of Merlin to the plasma membrane seems to be crucial for its major tumor-suppressive functions; this is facilitated by interactions with membrane-associated proteins, including CD44 (cluster of differentiation 44). Mutations within the CD44-binding domain of Merlin have been reported in many human cancers. This study evaluated the relative contribution of CD44- and Merlin-dependent processes to the development and progression of liver tumors. To this end, mice with a liver-specific deletion of the Nf2 gene were crossed with Cd44-knockout mice and subjected to extensive histological, biochemical and molecular analyses. In addition, cells were isolated from mutant livers and analyzed by in vitro assays. Deletion of Nf2 in the liver led to substantial liver enlargement and generation of hepatocellular carcinomas (HCCs), intrahepatic cholangiocarcinomas (iCCAs), as well as mixed hepatocellular cholangiocarcinomas. Whilst deletion of Cd44 had no influence on liver size or primary liver tumor development, it significantly inhibited metastasis formation in Nf2-mutant mice. CD44 upregulates expression of integrin ß2 and promotes transendothelial migration of liver cancer cells, which may facilitate metastatic spreading. Overall, our results suggest that CD44 may be a promising target for intervening with metastatic spreading of liver cancer.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cholangiocarcinoma , Hyaluronan Receptors , Liver Neoplasms , Neurofibromatosis 2 , Animals , Humans , Mice , Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic , Carcinoma, Hepatocellular/genetics , Cholangiocarcinoma/genetics , Genes, Neurofibromatosis 2 , Hyaluronan Receptors/genetics , Liver Neoplasms/genetics , Neurofibromatosis 2/genetics , Neurofibromin 2/genetics , Neurofibromin 2/metabolism
9.
Sci Adv ; 9(21): eabq7806, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37235660

ABSTRACT

Sepsis-associated encephalopathy (SAE) is a severe and frequent complication of sepsis causing delirium, coma, and long-term cognitive dysfunction. We identified microglia and C1q complement activation in hippocampal autopsy tissue of patients with sepsis and increased C1q-mediated synaptic pruning in a murine polymicrobial sepsis model. Unbiased transcriptomics of hippocampal tissue and isolated microglia derived from septic mice revealed an involvement of the innate immune system, complement activation, and up-regulation of lysosomal pathways during SAE in parallel to neuronal and synaptic damage. Microglial engulfment of C1q-tagged synapses could be prevented by stereotactic intrahippocampal injection of a specific C1q-blocking antibody. Pharmacologically targeting microglia by PLX5622, a CSF1-R inhibitor, reduced C1q levels and the number of C1q-tagged synapses, protected from neuronal damage and synapse loss, and improved neurocognitive outcome. Thus, we identified complement-dependent synaptic pruning by microglia as a crucial pathomechanism for the development of neuronal defects during SAE.


Subject(s)
Sepsis-Associated Encephalopathy , Sepsis , Mice , Animals , Microglia/metabolism , Complement C1q/metabolism , Sepsis-Associated Encephalopathy/etiology , Sepsis-Associated Encephalopathy/metabolism , Synapses/metabolism , Sepsis/complications , Sepsis/metabolism
10.
Cell Death Discov ; 9(1): 80, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36864036

ABSTRACT

Recurrently mutated in lymphoid neoplasms, the transcription factor RFX7 is emerging as a tumor suppressor. Previous reports suggested that RFX7 may also have a role in neurological and metabolic disorders. We recently reported that RFX7 responds to p53 signaling and cellular stress. Furthermore, we found RFX7 target genes to be dysregulated in numerous cancer types also beyond the hematological system. However, our understanding of RFX7's target gene network and its role in health and disease remains limited. Here, we generated RFX7 knock-out cells and employed a multi-omics approach integrating transcriptome, cistrome, and proteome data to obtain a more comprehensive picture of RFX7 targets. We identify novel target genes linked to RFX7's tumor suppressor function and underscoring its potential role in neurological disorders. Importantly, our data reveal RFX7 as a mechanistic link that enables the activation of these genes in response to p53 signaling.

11.
Arch Virol ; 168(1): 9, 2022 Dec 25.
Article in English | MEDLINE | ID: mdl-36566475

ABSTRACT

The order Hepelivirales comprises RNA viruses of four families (Alphatetraviridae, Benyviridae, Hepeviridae, and Matonaviridae). Sequencing of virus genomes from water samples from the Havel River and the Teltow Canal (Teltowkanal) in Berlin, Germany, revealed 25 almost complete and 68 partial genomes of viruses presumably belonging to the order Hepelivirales. Only one of these viruses exhibited a relationship to a known member of this order. The members of one virus clade have a polymerase with a permuted order of the conserved palm subdomain motifs resembling the polymerases of permutotetraviruses and birnaviruses. Overall, our study further demonstrates the diversity of hepeliviruses and indicates the enzootic prevalence of hepeliviruses in unknown hosts.


Subject(s)
RNA Viruses , Humans , Berlin , RNA Viruses/genetics , Germany , Rivers
12.
Cells ; 11(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36497123

ABSTRACT

Cognitive decline is one of the greatest health threats of old age and the maintenance of optimal brain function across a lifespan remains a big challenge. The hippocampus is considered particularly vulnerable but there is cross-species consensus that its functional integrity benefits from the early and continuous exercise of demanding physical, social and mental activities, also referred to as environmental enrichment (EE). Here, we investigated the extent to which late-onset EE can improve the already-impaired cognitive abilities of lifelong deprived C57BL/6 mice and how it affects gene expression in the hippocampus. To this end, 5- and 24-month-old mice housed in standard cages (5mSC and 24mSC) and 24-month-old mice exposed to EE in the last 2 months of their life (24mEE) were subjected to a Barnes maze task followed by next-generation RNA sequencing of the hippocampal tissue. Our analyses showed that late-onset EE was able to restore deficits in spatial learning and short-term memory in 24-month-old mice. These positive cognitive effects were reflected by specific changes in the hippocampal transcriptome, where late-onset EE affected transcription much more than age (24mSC vs. 24mEE: 1311 DEGs, 24mSC vs. 5mSC: 860 DEGs). Remarkably, a small intersection of 72 age-related DEGs was counter-regulated by late-onset EE. Of these, Bcl3, Cttnbp2, Diexf, Esr2, Grb10, Il4ra, Inhba, Rras2, Rps6ka1 and Socs3 appear to be particularly relevant as key regulators involved in dendritic spine plasticity and in age-relevant molecular signaling cascades mediating senescence, insulin resistance, apoptosis and tissue regeneration. In summary, our observations suggest that the brains of aged mice in standard cage housing preserve a considerable degree of plasticity. Switching them to EE proved to be a promising and non-pharmacological intervention against cognitive decline.


Subject(s)
Cognitive Dysfunction , Monomeric GTP-Binding Proteins , Animals , Mice , Mice, Inbred C57BL , Environment , Cognitive Dysfunction/genetics , Cognitive Dysfunction/therapy , Hippocampus , Cognition , Membrane Proteins , Microfilament Proteins , Nerve Tissue Proteins
13.
Mol Biol Evol ; 39(11)2022 11 03.
Article in English | MEDLINE | ID: mdl-36318827

ABSTRACT

A vast body of studies is available that describe age-dependent gene expression in relation to aging in a number of different model species. These data were obtained from animals kept in conditions with reduced environmental challenges, abundant food, and deprivation of natural sensory stimulation. Here, we compared wild- and captive aging in the short-lived turquoise killifish (Nothobranchius furzeri). These fish inhabit temporary ponds in the African savannah. When the ponds are flooded, eggs hatch synchronously, enabling a precise timing of their individual and population age. We collected the brains of wild fish of different ages and quantified the global age-dependent regulation of transcripts using RNAseq. A major difference between captive and wild populations is that wild populations had unlimited access to food and hence grew to larger sizes and reached asymptotic size more rapidly, enabling the analysis of age-dependent gene expression without the confounding effect of adult brain growth. We found that the majority of differentially expressed genes show the same direction of regulation in wild and captive populations. However, a number of genes were regulated in opposite direction. Genes downregulated in the wild and upregulated in captivity were enriched for terms related to neuronal communication. Genes upregulated in the wild and downregulated in captive conditions were enriched in terms related to DNA replication. Finally, the rate of age-dependent gene regulation was higher in wild animals, suggesting a phenomenon of accelerated aging.


Subject(s)
Cyprinodontiformes , Fundulidae , Animals , Fundulidae/genetics , Aging/genetics , Cyprinodontiformes/genetics , Animals, Wild/genetics , Brain
14.
Int J Mol Sci ; 23(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36362151

ABSTRACT

BRCA1 is a well-known breast cancer risk gene, involved in DNA damage repair via homologous recombination (HR) and replication fork protection. Therapy resistance was linked to loss and amplification of the BRCA1 gene causing inferior survival of breast cancer patients. Most studies have focused on the analysis of complete loss or mutations in functional domains of BRCA1. How mutations in non-functional domains contribute to resistance mechanisms remains elusive and was the focus of this study. Therefore, clones of the breast cancer cell line MCF7 with indels in BRCA1 exon 9 and 14 were generated using CRISPR/Cas9. Clones with successful introduced BRCA1 mutations were evaluated regarding their capacity to perform HR, how they handle DNA replication stress (RS), and the consequences on the sensitivity to MMC, PARP1 inhibition, and ionizing radiation. Unexpectedly, BRCA1 mutations resulted in both increased sensitivity and resistance to exogenous DNA damage, despite a reduction of HR capacity in all clones. Resistance was associated with improved DNA double-strand break repair and reduction in replication stress (RS). Lower RS was accompanied by increased activation and interaction of proteins essential for the S phase-specific DNA damage response consisting of HR proteins, FANCD2, and CHK1.


Subject(s)
Breast Neoplasms , Genes, BRCA1 , Humans , Female , Cell Line, Tumor , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Homologous Recombination , DNA Repair/genetics , DNA Replication , DNA Damage , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy
15.
Nat Commun ; 13(1): 5187, 2022 09 03.
Article in English | MEDLINE | ID: mdl-36057685

ABSTRACT

Specific functions of the immune system are essential to protect us from infections caused by pathogens such as viruses and bacteria. However, as we age, the immune system shows a functional decline that can be attributed in large part to age-associated defects in hematopoietic stem cells (HSCs)-the cells at the apex of the immune cell hierarchy. Here, we find that the Hippo pathway coactivator TAZ is potently induced in old HSCs and protects these cells from functional decline. We identify Clca3a1 as a TAZ-induced gene that allows us to trace TAZ activity in vivo. Using CLCA3A1 as a marker, we can isolate "young-like" HSCs from old mice. Mechanistically, Taz acts as coactivator of PU.1 and to some extent counteracts the gradual loss of PU.1 expression during HSC aging. Our work thus uncovers an essential role for Taz in a previously undescribed fail-safe mechanism in aging HSCs.


Subject(s)
Aging , Hematopoietic Stem Cells , Aging/physiology , Animals , Hematopoietic Stem Cells/metabolism , Mice
16.
Int J Mol Sci ; 23(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35955749

ABSTRACT

Osteosarcoma is the most common type of pediatric bone tumor. Despite great advances in chemotherapy during the past decades, the survival rates of osteosarcoma patients remain unsatisfactory. Drug resistance is one of the main reasons, leading to treatment failure and poor prognosis. Previous reports correlated expression of cluster of differentiation 44 (CD44) with drug resistance and poor survival of osteosarcoma patients, however the underlying mechanisms are poorly defined. Here, we investigated the role of CD44 in the regulation of drug chemoresistance, using osteosarcoma cells isolated from mice carrying a mutation of the tumor suppressor neurofibromatosis type 2 (Nf2) gene. CD44 expression was knocked-down in the cells using CRISPR/Cas9 approach. Subsequently, CD44 isoforms and mutants were re-introduced to investigate CD44-dependent processes. Sensitivity to doxorubicin was analyzed in the osteosarcoma cells with modified CD44 expression by immunoblot, colony formation- and WST-1 assay. To dissect the molecular alterations induced by deletion of Cd44, RNA sequencing was performed on Cd44-positive and Cd44-negative primary osteosarcoma tissues isolated from Nf2-mutant mice. Subsequently, expression of candidate genes was evaluated by quantitative reverse transcription PCR (qRT-PCR). Our results indicate that CD44 increases the resistance of osteosarcoma cells to doxorubicin by up-regulating the levels of multidrug resistance (MDR) 1 protein expression, and suggest the role of proteolytically released CD44 intracellular domain, and hyaluronan interactions in this process. Moreover, high throughput sequencing analysis identified differential regulation of several apoptosis-related genes in Cd44-positive and -negative primary osteosarcomas, including p53 apoptosis effector related to PMP-22 (Perp). Deletion of Cd44 in osteosarcoma cells led to doxorubicin-dependent p53 activation and a profound increase in Perp mRNA expression. Overall, our results suggest that CD44 might be an important regulator of drug resistance and suggest that targeting CD44 can sensitize osteosarcoma to standard chemotherapy.


Subject(s)
Bone Neoplasms , Osteosarcoma , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Mice , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Osteosarcoma/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
17.
Int J Mol Sci ; 23(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36012156

ABSTRACT

Among Histone post-translational modifications (PTMs), lysine acetylation plays a pivotal role in the epigenetic regulation of gene expression, mediated by chromatin modifying enzymes. Due to their activity in physiology and pathology, several chemical compounds have been developed to inhibit the function of these proteins. However, the pleiotropy of these classes of proteins represents a weakness of epigenetic drugs. Ideally, a new generation of epigenetic drugs should target with molecular precision individual acetylated lysines on the target protein. We exploit a PTM-directed interference, based on an intrabody (scFv-58F) that selectively binds acetylated lysine 9 of histone H3 (H3K9ac), to test the hypothesis that targeting H3K9ac yields more specific effects than inhibiting the corresponding HAT enzyme that installs that PTM. In yeast scFv-58F modulates, gene expression in a more specific way, compared to two well-established HAT inhibitors. This PTM-specific interference modulated expression of genes involved in ribosome biogenesis and function. In mammalian cells, the scFv-58F induces exclusive changes in the H3K9ac-dependent expression of specific genes. These results suggest the H3K9ac-specific intrabody as the founder of a new class of molecules to directly target histone PTMs, inverting the paradigm from inhibiting the writer enzyme to acting on the PTM.


Subject(s)
Histones , Lysine , Acetylation , Animals , Epigenesis, Genetic , Gene Expression , Histone Acetyltransferases/metabolism , Histones/metabolism , Lysine/metabolism , Mammals/metabolism , Protein Processing, Post-Translational
18.
Front Microbiol ; 13: 865287, 2022.
Article in English | MEDLINE | ID: mdl-35444619

ABSTRACT

To improve the understanding of the virome diversity of riverine ecosystems in metropolitan areas, a metagenome analysis was performed with water collected in June 2018 from the river Havel in Berlin, Germany. After enrichment of virus particles and RNA extraction, paired-end Illumina sequencing was conducted and assignment to virus groups and families was performed. This paper focuses on picorna-like viruses, the most diverse and abundant group of viruses with impact on human, animal, and environmental health. Here, we describe altogether 166 viral sequences ranging in size from 1 to 11.5 kb. The 71 almost complete genomes are comprised of one candidate iflavirus, one picornavirus, two polycipiviruses, 27 marnaviruses, 27 dicistro-like viruses, and 13 untypeable viruses. Many partial picorna-like virus sequences up to 10.2 kb were also investigated. The sequences of the Havel picorna-like viruses represent genomes of seven of eight so far known Picornavirales families. Detection of numerous distantly related dicistroviruses suggests the existence of additional, yet unexplored virus groups with dicistronic genomes, including few viruses with unusual genome layout. Of special interest is a clade of dicistronic viruses with capsid protein-encoding sequences at the 5'-end of the genome. Also, monocistronic viruses with similarity of their polymerase and capsid proteins to those of dicistroviruses are interesting. A second protein with NTP-binding site present in the polyprotein of solinviviruses and related viruses needs further attention. The results underline the importance to study the viromes of fluvial ecosystems. So far acknowledged marnaviruses have been isolated from marine organisms. However, the present study and available sequence data suggest that rivers and limnic habitats are relevant ecosystems with circulation of marnaviruses as well as a plethora of unknown picorna-like viruses.

19.
Cells ; 11(3)2022 01 20.
Article in English | MEDLINE | ID: mdl-35159152

ABSTRACT

Age-associated organ failure and degenerative diseases have a major impact on human health. Cardiovascular dysfunction has an increasing prevalence with age and is one of the leading causes of death. In contrast to humans, zebrafish have extraordinary regeneration capacities of complex organs including the heart. In addition, zebrafish has recently become a model organism in research on aging. Here, we have compared the ventricular transcriptome as well as the regenerative capacity after cryoinjury of old and young zebrafish hearts. We identified the immune system as activated in old ventricles and found muscle organization to deteriorate upon aging. Our data show an accumulation of immune cells, mostly macrophages, in the old zebrafish ventricle. Those immune cells not only increased in numbers but also showed morphological and behavioral changes with age. Our data further suggest that the regenerative response to cardiac injury is generally impaired and much more variable in old fish. Collagen in the wound area was already significantly enriched in old fish at 7 days post injury. Taken together, these data indicate an 'inflammaging'-like process in the zebrafish heart and suggest a change in regenerative response in the old.


Subject(s)
Heart , Zebrafish , Aging , Animals , Cell Proliferation , Heart/physiology , Macrophages , Zebrafish/physiology
20.
Cells ; 10(12)2021 11 30.
Article in English | MEDLINE | ID: mdl-34943873

ABSTRACT

SMG6 is an endonuclease, which cleaves mRNAs during nonsense-mediated mRNA decay (NMD), thereby regulating gene expression and controling mRNA quality. SMG6 has been shown as a differentiation license factor of totipotent embryonic stem cells. To investigate whether it controls the differentiation of lineage-specific pluripotent progenitor cells, we inactivated Smg6 in murine embryonic neural stem cells. Nestin-Cre-mediated deletion of Smg6 in mouse neuroprogenitor cells (NPCs) caused perinatal lethality. Mutant mice brains showed normal structure at E14.5 but great reduction of the cortical NPCs and late-born cortical neurons during later stages of neurogenesis (i.e., E18.5). Smg6 inactivation led to dramatic cell death in ganglionic eminence (GE) and a reduction of interneurons at E14.5. Interestingly, neurosphere assays showed self-renewal defects specifically in interneuron progenitors but not in cortical NPCs. RT-qPCR analysis revealed that the interneuron differentiation regulators Dlx1 and Dlx2 were reduced after Smg6 deletion. Intriguingly, when Smg6 was deleted specifically in cortical and hippocampal progenitors, the mutant mice were viable and showed normal size and architecture of the cortex at E18.5. Thus, SMG6 regulates cell fate in a cell type-specific manner and is more important for neuroprogenitors originating from the GE than for progenitors from the cortex.


Subject(s)
Endoribonucleases/metabolism , Neurogenesis , Ribonucleases/metabolism , Telomerase/metabolism , Animals , Animals, Newborn , Cell Cycle , Cell Differentiation , Cell Self Renewal , Cell Survival , Central Nervous System/pathology , DNA Repair , Embryo, Mammalian/pathology , Endoribonucleases/genetics , Gene Deletion , Mice , Models, Biological , Mutation/genetics , Neural Stem Cells/metabolism , Neurons/metabolism , Neurons/pathology , Telomerase/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...