Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Ecology ; 104(2): e3910, 2023 02.
Article in English | MEDLINE | ID: mdl-36315030

ABSTRACT

Relationships between biodiversity and ecosystem functioning depend on the processes structuring community assembly. However, predicting biodiversity-ecosystem functioning (BEF) relationships based on community assembly remains challenging because assembly outcomes are often contingent on history and the consequences of history for ecosystem functions are poorly understood. In a grassland restoration experiment, we isolated the role of history for the relationships between plant biodiversity and multiple ecosystem functions by initiating assembly in three different years, while controlling for all other aspects of community assembly. We found that two aspects of assembly history-establishment year and succession-altered species and trait community trajectories, which in turn altered net primary productivity, decomposition rates, and floral resources. Moreover, history altered BEF relationships (which ranged from positive to negative), both within and across functions, by modifying the causal pathways linking species identity, traits, diversity, and ecosystem functions. Our results show that the interplay of deterministic succession and environmental stochasticity during establishment mediate historical contingencies that cause variation in biodiversity and ecosystem functions, even under otherwise identical assembly conditions. An explicit attention to history is needed to understand why biodiversity-ecosystem function relationships vary in natural ecosystems: a critical question at the intersection of fundamental theory and applications to environmental change biology and ecosystem restoration.


Subject(s)
Biodiversity , Ecosystem , Plants , Phenotype
2.
Ecology ; 101(9): e03104, 2020 09.
Article in English | MEDLINE | ID: mdl-32455484

ABSTRACT

Environmental conditions that vary from year to year can be strong drivers of ecological dynamics, including the composition of newly assembled communities. However, ecologists often chalk such dynamics up to "noise" in ecological experiments. Our lack of attention to such "year effects" hampers our understanding of contingencies in ecological assembly mechanisms and limits the generalizability of research findings. Here, we provide examples from published research demonstrating the importance of year effects during community assembly across study systems. We further quantify these year effects with two case studies-a grassland restoration experiment and a study of postfire conifer recruitment-finding that the effects of initiation year on community composition can dictate community as much, if not more, than the effects of experimental treatments or site. The evidence strongly suggests that year effects are pervasive and profound, and that year effects early in community assembly can drive strong and enduring divergence in community structure and function. Explicit attention to year effects in ecological research serves to illuminate basic ecological principles, allowing for better understanding of contingencies in ecology. These dynamics also have strong implications for applied ecological research, offering new insights into ecological restoration as well as future climate change.


Subject(s)
Climate Change , Ecosystem
3.
Sci Rep ; 10(1): 5953, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32249766

ABSTRACT

Ecological restoration - the rebuilding of damaged or destroyed ecosystems - is a critical component of conservation efforts, but is hindered by inconsistent, unpredictable outcomes. We investigated a source of this variation that is anecdotally suggested by practitioners, but for which empirical evidence is rare: the weather conditions during the first growing season after planting. The idea of whether natural communities face long-term consequences from conditions even many years in the past, called historical contingency, is a debated idea in ecological research. Using a large dataset (83 sites) across a wide geographic distribution (three states), we find evidence that precipitation and temperatures in the planting year (2-19 years before present) affected the relative dominance of the sown (native target species) and non-sown (mostly non-native) species. We find strong support for lasting planting year weather effects in restored tallgrass prairies, thereby supporting the historically contingent model of community assembly in a real-world setting.

SELECTION OF CITATIONS
SEARCH DETAIL