Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
JMIR Ment Health ; 11: e52045, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963925

ABSTRACT

BACKGROUND: Identifying individuals with depressive symptomatology (DS) promptly and effectively is of paramount importance for providing timely treatment. Machine learning models have shown promise in this area; however, studies often fall short in demonstrating the practical benefits of using these models and fail to provide tangible real-world applications. OBJECTIVE: This study aims to establish a novel methodology for identifying individuals likely to exhibit DS, identify the most influential features in a more explainable way via probabilistic measures, and propose tools that can be used in real-world applications. METHODS: The study used 3 data sets: PROACTIVE, the Brazilian National Health Survey (Pesquisa Nacional de Saúde [PNS]) 2013, and PNS 2019, comprising sociodemographic and health-related features. A Bayesian network was used for feature selection. Selected features were then used to train machine learning models to predict DS, operationalized as a score of ≥10 on the 9-item Patient Health Questionnaire. The study also analyzed the impact of varying sensitivity rates on the reduction of screening interviews compared to a random approach. RESULTS: The methodology allows the users to make an informed trade-off among sensitivity, specificity, and a reduction in the number of interviews. At the thresholds of 0.444, 0.412, and 0.472, determined by maximizing the Youden index, the models achieved sensitivities of 0.717, 0.741, and 0.718, and specificities of 0.644, 0.737, and 0.766 for PROACTIVE, PNS 2013, and PNS 2019, respectively. The area under the receiver operating characteristic curve was 0.736, 0.801, and 0.809 for these 3 data sets, respectively. For the PROACTIVE data set, the most influential features identified were postural balance, shortness of breath, and how old people feel they are. In the PNS 2013 data set, the features were the ability to do usual activities, chest pain, sleep problems, and chronic back problems. The PNS 2019 data set shared 3 of the most influential features with the PNS 2013 data set. However, the difference was the replacement of chronic back problems with verbal abuse. It is important to note that the features contained in the PNS data sets differ from those found in the PROACTIVE data set. An empirical analysis demonstrated that using the proposed model led to a potential reduction in screening interviews of up to 52% while maintaining a sensitivity of 0.80. CONCLUSIONS: This study developed a novel methodology for identifying individuals with DS, demonstrating the utility of using Bayesian networks to identify the most significant features. Moreover, this approach has the potential to substantially reduce the number of screening interviews while maintaining high sensitivity, thereby facilitating improved early identification and intervention strategies for individuals experiencing DS.


Subject(s)
Algorithms , Bayes Theorem , Depression , Humans , Depression/diagnosis , Adult , Female , Male , Brazil/epidemiology , Middle Aged , Machine Learning , Mass Screening/methods , Sensitivity and Specificity , Health Surveys
2.
JMIR Ment Health ; 10: e48444, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37856186

ABSTRACT

BACKGROUND: Anhedonia and depressed mood are considered the cardinal symptoms of major depressive disorder. These are the first 2 items of the Patient Health Questionnaire (PHQ)-9 and comprise the ultrabrief PHQ-2 used for prescreening depressive symptomatology. The prescreening performance of alternative PHQ-9 item pairings is rarely compared with that of the PHQ-2. OBJECTIVE: This study aims to use machine learning (ML) with the PHQ-9 items to identify and validate the most predictive 2-item depressive symptomatology ultrabrief questionnaire and to test the generalizability of the best pairings found on the primary data set, with 6 external data sets from different populations to validate their use as prescreening instruments. METHODS: All 36 possible PHQ-9 item pairings (each yielding scores of 0-6) were investigated using ML-based methods with logistic regression models. Their performances were evaluated based on the classification of depressive symptomatology, defined as PHQ-9 scores ≥10. This gave each pairing an equal opportunity and avoided any bias in item pairing selection. RESULTS: The ML-based PHQ-9 items 2 and 4 (phq2&4), the depressed mood and low-energy item pairing, and PHQ-9 items 2 and 8 (phq2&8), the depressed mood and psychomotor retardation or agitation item pairing, were found to be the best on the primary data set training split. They generalized well on the primary data set test split with area under the curves (AUCs) of 0.954 and 0.946, respectively, compared with an AUC of 0.942 for the PHQ-2. The phq2&4 had a higher AUC than the PHQ-2 on all 6 external data sets, and the phq2&8 had a higher AUC than the PHQ-2 on 3 data sets. The phq2&4 had the highest Youden index (an unweighted average of sensitivity and specificity) on 2 external data sets, and the phq2&8 had the highest Youden index on another 2. The PHQ-2≥2 cutoff also had the highest Youden index on 2 external data sets, joint highest with the phq2&4 on 1, but its performance fluctuated the most. The PHQ-2≥3 cutoff had the highest Youden index on 1 external data set. The sensitivity and specificity achieved by the phq2&4 and phq2&8 were more evenly balanced than the PHQ-2≥2 and ≥3 cutoffs. CONCLUSIONS: The PHQ-2 did not prove to be a more effective prescreening instrument when compared with other PHQ-9 item pairings. Evaluating all item pairings showed that, compared with alternative partner items, the anhedonia item underperformed alongside the depressed mood item. This suggests that the inclusion of anhedonia as a core symptom of depression and its presence in ultrabrief questionnaires may be incompatible with the empirical evidence. The use of the PHQ-2 to prescreen for depressive symptomatology could result in a greater number of misclassifications than alternative item pairings.

SELECTION OF CITATIONS
SEARCH DETAIL