Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Immunol ; 53(1): e2250017, 2023 01.
Article in English | MEDLINE | ID: mdl-36401605

ABSTRACT

The lymphocyte-specific adapter protein SLy1 has previously been identified as indispensable for thymocyte development and T-cell proliferation and, recently, as a cause of X-linked combined immunodeficiency in humans that recapitulates many of the abnormalities reported in SLy1KO and SLy1d/d mice. As SLy1KO NK cells show increased levels of p53, we focused our research on the interdependency of SLy1 and p53 for thymocyte development. Using RT-PCR and immunoblot analysis, we observed increased levels of p53 as well as DNA damage response proteins in SLy1KO thymocytes. To test for rescue from SLy1-induced deficiencies in thymocyte development like reduced thymocyte numbers and reduced DN to DP progression, we generated a mouse model with T cell-specific p53-deficiency on an SLy1KO background and analyzed lymphocyte populations in these mice and respective controls. Astonishingly, SLy1KO -typical deficiencies were retained, showing that SLy1 is mechanistically independent of p53. Studies of apoptosis and proliferation in SLy1KO thymocytes revealed decreased proliferation in the DN3 subpopulation as a possible reason for the decreased thymocyte number. In mice with p53-deficient T cells, we observed tumor formation leading to reduced survival, preferentially in SLy1WT mice. Thus, we suggest that a SLy1-deficiency reduces proliferation, resulting in less hematologic tumors initiated by the p53-deficiency.


Subject(s)
Neoplasms , Thymocytes , Humans , Mice , Animals , Thymocytes/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Mice, Knockout , Thymus Gland/metabolism , Cell Proliferation , Mice, Inbred C57BL , Cell Differentiation
2.
Nat Immunol ; 22(1): 74-85, 2021 01.
Article in English | MEDLINE | ID: mdl-32999467

ABSTRACT

T cell immunity is central for the control of viral infections. To characterize T cell immunity, but also for the development of vaccines, identification of exact viral T cell epitopes is fundamental. Here we identify and characterize multiple dominant and subdominant SARS-CoV-2 HLA class I and HLA-DR peptides as potential T cell epitopes in COVID-19 convalescent and unexposed individuals. SARS-CoV-2-specific peptides enabled detection of post-infectious T cell immunity, even in seronegative convalescent individuals. Cross-reactive SARS-CoV-2 peptides revealed pre-existing T cell responses in 81% of unexposed individuals and validated similarity with common cold coronaviruses, providing a functional basis for heterologous immunity in SARS-CoV-2 infection. Diversity of SARS-CoV-2 T cell responses was associated with mild symptoms of COVID-19, providing evidence that immunity requires recognition of multiple epitopes. Together, the proposed SARS-CoV-2 T cell epitopes enable identification of heterologous and post-infectious T cell immunity and facilitate development of diagnostic, preventive and therapeutic measures for COVID-19.


Subject(s)
COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , Peptides/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Viral Vaccines/immunology , COVID-19/prevention & control , COVID-19/virology , Cross Reactions/immunology , HLA-DR Antigens/immunology , HLA-DR Antigens/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Immunologic Memory/immunology , SARS-CoV-2/physiology , T-Lymphocytes/metabolism , Viral Vaccines/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...