Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 3284, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38332245

ABSTRACT

Terbium-149 (T1/2 = 4.1 h, Eα = 3.98 MeV (16.7%), 28 µm range in tissue) is a radionuclide with potential for targeted alpha therapy. Due to the negligible emission of α-emitting daughter nuclides, toxicity to healthy tissue may be reduced in comparison with other α-particle emitters. In this study, terbium-149 was produced via 1.4 GeV proton irradiation of a tantalum target at the CERN-ISOLDE facility. The spallation products were mass separated and implanted on zinc-coated foils and, later, radiochemically processed. Terbium-149 was separated from the co-produced isobaric radioisotopes and the zinc coating from the implantation foil, using cation-exchange and extraction chromatographic techniques, respectively. At the end of separation, up to 260 MBq terbium-149 were obtained with > 99% radionuclidic purity. Radiolabeling experiments were performed with DOTATATE, achieving 50 MBq/nmol apparent molar activity with radiochemical purity > 99%. The chemical purity was determined by inductively coupled plasma-mass spectrometry measurements, which showed lead, copper, iron and zinc only at ppb level. The radiolabeling of the somatostatin analogue DOTATATE with [149Tb]TbCl3 and the subsequent in vivo PET/CT scans conducted in xenografted mice, showing good tumor uptake, further demonstrated product quality and its ability to be used in a preclinical setting.


Subject(s)
Positron Emission Tomography Computed Tomography , Quality Improvement , Terbium , Animals , Mice , Radioisotopes/therapeutic use , Zinc
2.
Appl Radiat Isot ; 186: 110252, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35537298

ABSTRACT

The future development of personalized nuclear medicine relies on the availability of novel medical radionuclides. In particular, radiometals are attracting considerable interest since they can be used to label both proteins and peptides. Among them, the ß+-emitter 68Ga is widely used in nuclear medicine for positron emission tomography (PET). It is used in theranostics as the diagnostic partner of the therapeutic ß--emitters 177Lu and 90Y for the treatment of a wide range of diseases, including prostate cancer. Currently, 68Ga is usually obtained via 68Ge/68Ga generators. However, their availability, high price and limited produced radioactivity per elution are a major barrier for a wider use of the 68Ga-based diagnostic radiotracers. A promising solution is the production of 68Ga by means of proton irradiation of enriched 68Zn liquid or solid targets. Along this line, a research program is ongoing at the Bern medical cyclotron, equipped with a solid target station. In this paper, we report on the measurements of 68Ga, 67Ga and 66Ga production cross-sections using natural Zn and enriched 68Zn material, which served as the basis to perform optimized 68Ga production tests with enriched 68Zn solid targets.


Subject(s)
Cyclotrons , Prostatic Neoplasms , Gallium Radioisotopes/metabolism , Humans , Male , Positron-Emission Tomography , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radioisotopes , Radiopharmaceuticals/metabolism
3.
EJNMMI Radiopharm Chem ; 6(1): 37, 2021 Nov 14.
Article in English | MEDLINE | ID: mdl-34778932

ABSTRACT

BACKGROUND: Terbium-155 [T1/2 = 5.32 d, Eγ = 87 keV (32%) 105 keV (25%)] is an interesting radionuclide suitable for single photon emission computed tomography (SPECT) imaging with potential application in the diagnosis of oncological disease. It shows similar decay characteristics to the clinically established indium-111 and would be a useful substitute for the diagnosis and prospective dosimetry with biomolecules that are afterwards labeled with therapeutic radiolanthanides and pseudo-radiolanthanides, such as lutetium-177 and yttrium-90. Moreover, terbium-155 could form part of the perfect "matched pair" with the therapeutic radionuclide terbium-161, making the concept of true radiotheragnostics a reality. The aim of this study was the investigation of the production of terbium-155 via the 155Gd(p,n)155Tb and 156Gd(p,2n)155Tb nuclear reactions and its subsequent purification, in order to obtain a final product in quantity and quality sufficient for preclinical application. The 156Gd(p,2n)155Tb nuclear reaction was performed with 72 MeV protons (degraded to ~ 23 MeV), while the 155Gd(p,n)155Tb reaction was degraded further to ~ 10 MeV, as well as performed at an 18 MeV medical cyclotron, to demonstrate its feasibility of production. RESULT: The 156Gd(p,2n)155Tb nuclear reaction demonstrated higher production yields of up to 1.7 GBq, however, lower radionuclidic purity when compared to the final product (~ 200 MBq) of the 155Gd(p,n)155Tb nuclear reaction. In particular, other radioisotopes of terbium were produced as side products. The radiochemical purification of terbium-155 from the target material was developed to provide up to 1.0 GBq product in a small volume (~ 1 mL 0.05 M HCl), suitable for radiolabeling purposes. The high chemical purity of terbium-155 was proven by radiolabeling experiments at molar activities up to 100 MBq/nmol. SPECT/CT experiments were performed in tumor-bearing mice using [155Tb]Tb-DOTATOC. CONCLUSION: This study demonstrated two possible production routes for high activities of terbium-155 using a cyclotron, indicating that the radionuclide is more accessible than the exclusive mass-separated method previously demonstrated. The developed radiochemical purification of terbium-155 from the target material yielded [155Tb]TbCl3 in high chemical purity. As a result, initial cell uptake investigations, as well as SPECT/CT in vivo studies with [155Tb]Tb-DOTATOC, were successfully performed, indicating that the chemical separation produced a product with suitable quality for preclinical studies.

4.
Chimia (Aarau) ; 74(12): 968-975, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33357290

ABSTRACT

Radionuclide production and development has a long history at the Paul Scherrer Institute (PSI) and dates back to the founding times of its forerunner institutions: the Federal Institute for Reactor Research and the Swiss Institute for Nuclear Research. The facilities used for this purpose have evolved substantially over the last five decades. Many radiometals in use today, as radiopharmaceuticals, are for the diagnosis and treatment of disease, with the most popular means of detection being Positron Emission Tomography. These positron emitters are easily produced at low proton energies using medical cyclotrons, however, developments at these facilities are lacking. Currently, the fixed 72 MeV proton beam at PSI is degraded at IP2 irradiation station to provide the desired energy to irradiate targets to produce the likes of 44Sc, 43Sc and 64Cu as a proof of principle, which are of great interest to the nuclear medicine community. This development work can then be implemented at facilities containing medical cyclotrons. A history of the development of radionuclides at PSI, along with current development and projects with partner institutions, is described.

SELECTION OF CITATIONS
SEARCH DETAIL
...