Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
2.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38464291

ABSTRACT

Lung cancer, the leading cause of cancer mortality, exhibits diverse histological subtypes and genetic complexities. Numerous preclinical mouse models have been developed to study lung cancer, but data from these models are disparate, siloed, and difficult to compare in a centralized fashion. Here we established the Lung Cancer Mouse Model Database (LCMMDB), an extensive repository of 1,354 samples from 77 transcriptomic datasets covering 974 samples from genetically engineered mouse models (GEMMs), 368 samples from carcinogen-induced models, and 12 samples from a spontaneous model. Meticulous curation and collaboration with data depositors have produced a robust and comprehensive database, enhancing the fidelity of the genetic landscape it depicts. The LCMMDB aligns 859 tumors from GEMMs with human lung cancer mutations, enabling comparative analysis and revealing a pressing need to broaden the diversity of genetic aberrations modeled in GEMMs. Accompanying this resource, we developed a web application that offers researchers intuitive tools for in-depth gene expression analysis. With standardized reprocessing of gene expression data, the LCMMDB serves as a powerful platform for cross-study comparison and lays the groundwork for future research, aiming to bridge the gap between mouse models and human lung cancer for improved translational relevance.

3.
iScience ; 27(1): 108596, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38174322

ABSTRACT

Adaptive plasticity to the standard chemotherapeutic temozolomide (TMZ) leads to glioblastoma progression. Here, we examine early stages of this process in patient-derived cellular models, exposing the human lysine-specific demethylase 5B (KDM5B) as a prospective indicator for subclonal expansion. By integration of a reporter, we show its preferential activity in rare, stem-like ALDH1A1+ cells, immediately increasing expression upon TMZ exposure. Naive, genetically unmodified KDM5Bhigh cells phosphorylate AKT (pAKT) and act as slow-cycling persisters under TMZ. Knockdown of KDM5B reverses pAKT levels, simultaneously increasing PTEN expression and TMZ sensitivity. Pharmacological inhibition of PTEN rescues the effect. Interference with KDM5B subsequent to TMZ decreases cellular vitality, and clonal tracing with DNA barcoding demonstrates high individual levels of KDM5B to predict subclonal expansion already before TMZ exposure. Thus, KDM5Bhigh treatment-naive cells preferentially contribute to the dynamics of drug resistance under TMZ. These findings may serve as a cornerstone for future biomarker-assisted clinical trials.

4.
Science ; 380(6640): 93-101, 2023 04 07.
Article in English | MEDLINE | ID: mdl-36926954

ABSTRACT

Although most cancer drugs modulate the activities of cellular pathways by changing posttranslational modifications (PTMs), little is known regarding the extent and the time- and dose-response characteristics of drug-regulated PTMs. In this work, we introduce a proteomic assay called decryptM that quantifies drug-PTM modulation for thousands of PTMs in cells to shed light on target engagement and drug mechanism of action. Examples range from detecting DNA damage by chemotherapeutics, to identifying drug-specific PTM signatures of kinase inhibitors, to demonstrating that rituximab kills CD20-positive B cells by overactivating B cell receptor signaling. DecryptM profiling of 31 cancer drugs in 13 cell lines demonstrates the broad applicability of the approach. The resulting 1.8 million dose-response curves are provided as an interactive molecular resource in ProteomicsDB.


Subject(s)
Antineoplastic Agents , Apoptosis , Protein Processing, Post-Translational , Proteomics , Antigens, CD20/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , B-Lymphocytes/drug effects , Cell Line, Tumor , DNA Damage , Protein Processing, Post-Translational/drug effects , Proteomics/methods , Receptors, Antigen, B-Cell/metabolism , Signal Transduction , Humans
5.
Clin Cancer Res ; 29(2): 488-500, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36239995

ABSTRACT

PURPOSE: Therapy resistance and fatal disease progression in glioblastoma are thought to result from the dynamics of intra-tumor heterogeneity. This study aimed at identifying and molecularly targeting tumor cells that can survive, adapt, and subclonally expand under primary therapy. EXPERIMENTAL DESIGN: To identify candidate markers and to experimentally access dynamics of subclonal progression in glioblastoma, we established a discovery cohort of paired vital cell samples obtained before and after primary therapy. We further used two independent validation cohorts of paired clinical tissues to test our findings. Follow-up preclinical treatment strategies were evaluated in patient-derived xenografts. RESULTS: We describe, in clinical samples, an archetype of rare ALDH1A1+ tumor cells that enrich and acquire AKT-mediated drug resistance in response to standard-of-care temozolomide (TMZ). Importantly, we observe that drug resistance of ALDH1A1+ cells is not intrinsic, but rather an adaptive mechanism emerging exclusively after TMZ treatment. In patient cells and xenograft models of disease, we recapitulate the enrichment of ALDH1A1+ cells under the influence of TMZ. We demonstrate that their subclonal progression is AKT-driven and can be interfered with by well-timed sequential rather than simultaneous antitumor combination strategy. CONCLUSIONS: Drug-resistant ALDH1A1+/pAKT+ subclones accumulate in patient tissues upon adaptation to TMZ therapy. These subclones may therefore represent a dynamic target in glioblastoma. Our study proposes the combination of TMZ and AKT inhibitors in a sequential treatment schedule as a rationale for future clinical investigation.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Proto-Oncogene Proteins c-akt , Drug Resistance, Neoplasm/genetics , Temozolomide , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Xenograft Model Antitumor Assays , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use
6.
Acta Haematol ; 145(2): 160-169, 2022.
Article in English | MEDLINE | ID: mdl-34749363

ABSTRACT

INTRODUCTION: Unlike homozygous hemoglobin SS (HbSS) disease, stroke is a rare complication in hemoglobin SC (HbSC) disease. However, recent studies have demonstrated a high prevalence of silent stroke in HbSC disease. The factors associated with stroke and cerebral vasculopathy in the HbSC population are unknown. METHODS: We conducted a retrospective study of all patients with sickle cell disease treated at the University of Missouri, Columbia, over an 18-year period (2000-2018). The goal of the study was to characterize the silent, overt stroke, and cerebral vasculopathy in HbSC patients and compare them to patients with HbSS and HbS/ß thalassemia1 (thal) in this cohort. We also analyzed the laboratory and clinical factors associated with stroke and cerebral vasculopathy in the HbSC population. RESULTS: Of the 34 HbSC individuals, we found that the overall prevalence of stroke and cerebral vasculopathy was 17.7%. Only females had evidence of stroke or cerebral vasculopathy in our HbSC cohort (33.3%, p = 0.019). Time-averaged means of maximum velocities were lower in the HbSC group than the HbSS group and did not correlate with stroke outcome. Among HbSC individuals, those with stroke and cerebral vasculopathy had a marginally higher serum creatinine than those without these complications (0.77 mg/dL vs. 0.88 mg/dL, p = 0.08). Stroke outcome was associated with recurrent vaso-occlusive pain crises (Rec VOCs) (75 vs. 25%, p = 0.003) in HbSC patients. The predominant cerebrovascular lesions in HbSC included microhemorrhages and leukoencephalopathy. CONCLUSION: There is a distinct subset of individuals with HbSC who developed overt, silent stroke, and cerebral vasculopathy. A female predominance and association with Rec VOCs were identified in our cohort; however, larger clinical trials are needed to identify and confirm specific clinical and laboratory markers associated with stroke and vasculopathy in HbSC disease.


Subject(s)
Anemia, Sickle Cell , Hemoglobin SC Disease , Stroke , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/epidemiology , Female , Hemoglobin SC Disease/complications , Hemoglobin SC Disease/epidemiology , Humans , Prevalence , Retrospective Studies , Stroke/diagnosis , Stroke/epidemiology , Stroke/etiology
7.
Cell Rep ; 37(8): 110056, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34818551

ABSTRACT

Statins are among the most commonly prescribed drugs, and around every fourth person above the age of 40 is on statin medication. Therefore, it is of utmost clinical importance to understand the effect of statins on cancer cell plasticity and its consequences to not only patients with cancer but also patients who are on statins. Here, we find that statins induce a partial epithelial-to-mesenchymal transition (EMT) phenotype in cancer cells of solid tumors. Using a comprehensive STRING network analysis of transcriptome, proteome, and phosphoproteome data combined with multiple mechanistic in vitro and functional in vivo analyses, we demonstrate that statins reduce cellular plasticity by enforcing a mesenchymal-like cell state that increases metastatic seeding ability on one side but reduces the formation of (secondary) tumors on the other due to heterogeneous treatment responses. Taken together, we provide a thorough mechanistic overview of the consequences of statin use for each step of cancer development, progression, and metastasis.


Subject(s)
Cell Plasticity/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Neoplasms/metabolism , Cell Line, Tumor , Disease Progression , Epithelial-Mesenchymal Transition/genetics , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Neoplasm Metastasis , Neoplastic Stem Cells/pathology
8.
Eur J Cancer ; 159: 16-23, 2021 12.
Article in English | MEDLINE | ID: mdl-34715459

ABSTRACT

INTRODUCTION: Mutant RAS guanosine triphosphate hydrolases (GTPases) are key oncogenic drivers in many cancers. The KRASG12C variant has recently become targetable by a new drug class specifically locking KRASG12C in its inactive guanosine diphosphate (GDP)-bound state. Clinical activity was demonstrated in patients with advanced lung cancers harbouring KRASG12C mutations but was limited by the development of resistance. METHODS: A biopsy from progressing lung cancer of a patient treated with the KRASG12C inhibitor sotorasib was obtained, and the underlying resistance factors were analysed. Mechanistic studies were performed in vitro and in vivo to uncover strategies to overcome resistance to KRASG12C inhibition. RESULTS: We demonstrated acquisition of HER2 copy number gain and KRASG12C mutation retention in the post-progression biopsy. To explore HER2 gain as the relevant resistance mechanism, we generated KRASG12C lung cancer models overexpressing HER2. MAPK pathway signalling remained active despite KRASG12C inhibitor treatment. Combined pharmacological inhibition of KRASG12C and SHP2 synergistically overcame HER2-mediated resistance in vitro and in vivo. CONCLUSIONS: These findings establish HER2 copy number gain as a clinically relevant mechanism of resistance to pharmacological KRASG12C inhibition that can be overcome by co-targeting SHP2.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm/physiology , Lung Neoplasms , Piperazines , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Pyridines , Pyrimidines , Receptor, ErbB-2/genetics , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Female , Humans , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mice , Mice, Nude , Middle Aged , Piperazines/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Pyridines/therapeutic use , Pyrimidines/therapeutic use , Xenograft Model Antitumor Assays
9.
Cancers (Basel) ; 13(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34439341

ABSTRACT

Tumor heterogeneity is a hallmark of many solid tumors, including pancreatic ductal adenocarcinoma (PDAC), and an inherent consequence of the clonal evolution of cancers. As such, it is considered the underlying concept of many characteristics of the disease, including the ability to metastasize, adapt to different microenvironments, and to develop therapy resistance. Undoubtedly, the high mortality of PDAC can be attributed to a high extent to these properties. Despite its apparent importance, studying tumor heterogeneity has been a challenging task, mainly due to its complexity and lack of appropriate methods. However, in recent years molecular DNA barcoding has emerged as a sophisticated tool that allows mapping of individual cells or subpopulations in a cell pool to study heterogeneity and thus devise new personalized treatment strategies. In this review, we provide an overview of genetic and non-genetic inter- and intra-tumor heterogeneity and its impact on (personalized) treatment strategies in PDAC and address how DNA barcoding technologies work and can be applied to study this clinically highly relevant question.

10.
Methods Mol Biol ; 2294: 239-251, 2021.
Article in English | MEDLINE | ID: mdl-33742406

ABSTRACT

DNA barcoding allows the quantitative, biomarker-free tracking of individual cell populations in mixed/heterogeneous cell pools. Here, we describe a multiplexed in vivo screening platform based on DNA barcoding technology to interrogate compound libraries for their effect on metastatic seeding in vivo. We apply next-generation sequencing (NGS) technology to quantitatively analyze high-throughput compound screening in mice. Up to 96 compounds and controls can be screened for their effect on metastatic ability in a single mouse.


Subject(s)
Drug Screening Assays, Antitumor/methods , High-Throughput Screening Assays/methods , Multiplex Polymerase Chain Reaction/methods , Neoplasms/genetics , RNA-Seq/methods , Animals , Cell Line, Tumor , HEK293 Cells , Humans , Mice , Neoplasm Metastasis , Neoplasms/drug therapy , Neoplasms/pathology
11.
Cancer Res ; 81(3): 567-579, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33239425

ABSTRACT

Lung cancer is a prevalent and lethal cancer type that leads to more deaths than the next four major cancer types combined. Metastatic cancer spread is responsible for most cancer-related deaths but the cellular changes that enable cancer cells to leave the primary tumor and establish inoperable and lethal metastases remain poorly understood. To uncover genes that are specifically required to sustain metastasis survival or growth, we performed a genome-scale pooled lentiviral-shRNA library screen in cells that represent nonmetastatic and metastatic states of lung adenocarcinoma. Mitochondrial ribosome and mitochondria-associated genes were identified as top gene sets associated with metastasis-specific lethality. Metastasis-derived cell lines in vitro and metastases analyzed ex vivo from an autochthonous lung cancer mouse model had lower mitochondrial membrane potential and reduced mitochondrial functionality than nonmetastatic primary tumors. Electron microscopy of metastases uncovered irregular mitochondria with bridging and loss of normal membrane structure. Consistent with these findings, compounds that inhibit mitochondrial translation or replication had a greater effect on the growth of metastasis-derived cells. Finally, mice with established tumors developed fewer metastases upon treatment with phenformin in vivo. These results suggest that the metastatic cell state in lung adenocarcinoma is associated with a specifically altered mitochondrial functionality that can be therapeutically exploited. SIGNIFICANCE: This study characterizes altered mitochondria functionality of the metastatic cell state in lung cancer and opens new avenues for metastasis-specific therapeutic targeting.


Subject(s)
Adenocarcinoma/genetics , Disease Models, Animal , Lung Neoplasms/genetics , Mitochondria/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Cell Line, Tumor , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study/methods , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice, Knockout , Mice, Transgenic , Mitochondria/metabolism , Neoplasm Metastasis , RNA Interference
12.
Oncogenesis ; 9(11): 102, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33214553

ABSTRACT

Lung cancer mortality largely results from metastasis. Despite curative surgery many patients with early-stage non-small cell lung cancer ultimately succumb to metastatic relapse. Current risk reduction strategies based on cytotoxic chemotherapy and radiation have only modest activity. Against this background, we functionally screened for novel metastasis modulators using a barcoded shRNA library and an orthotopic lung cancer model. We identified aryl hydrocarbon receptor (AHR), a sensor of xenobiotic chemicals and transcription factor, as suppressor of lung cancer metastasis. Knockdown of endogenous AHR induces epithelial-mesenchymal transition signatures, increases invasiveness of lung cancer cells in vitro and metastasis formation in vivo. Low intratumoral AHR expression associates with inferior outcome of patients with resected lung adenocarcinomas. Mechanistically, AHR triggers ATF4 signaling and represses matrix metalloproteinase activity, both counteracting metastatic programs. These findings link the xenobiotic defense system with control of lung cancer progression. AHR-regulated pathways are promising targets for innovative anti-metastatic strategies.

13.
Case Rep Hematol ; 2020: 8869335, 2020.
Article in English | MEDLINE | ID: mdl-33178467

ABSTRACT

EF Bart's disease is a rare form of nontransfusion-dependant thalassemia (NTDT) due to the coinheritance of homozygous hemoglobin E (ß E/ß E) genotype with hemoglobin H disease. These individuals are routinely found to have thalassemia intermedia with moderate anemia, increased hemoglobin Bart's and hemoglobin F on electrophoresis. The contribution of hemoglobin F-inducing polymorphisms in this disease has not been described previously. Here, we describe the hematological profile in a young child with coinheritance of Gγ-XmnI and Aγ-globin gene polymorphisms in EF Bart's disease. Interestingly, in this rare form of NTDT, normal HbF and elevated HbA2 were noted.

14.
Pediatr Blood Cancer ; 67(12): e28748, 2020 12.
Article in English | MEDLINE | ID: mdl-33025707

ABSTRACT

BACKGROUND: Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by anemia, short stature, congenital anomalies, and cancer predisposition. Most cases are due to mutations in genes encoding ribosomal proteins (RP) leading to RP haploinsufficiency. Effective treatments for the anemia of DBA include chronic red cell transfusions, long-term corticosteroid therapy, or hematopoietic stem cell transplantation. In a small patient series and in animal models, there have been hematologic responses to L-leucine with amelioration of anemia. The study objectives of this clinical trial were to determine feasibility, safety, and efficacy of L-leucine in transfusion-dependent patients with DBA. PROCEDURE: Patients ≥2 years of age received L-leucine 700 mg/m2 orally three times daily for nine months to determine a hematologic response and any improvement in growth (NCT01362595). RESULTS: This multicenter, phase I/II study enrolled 55 subjects; 43 were evaluable. There were 21 males; the median age at enrollment was 10.4 years (range, 2.5-46.1 years). No significant adverse events were attributable to L-leucine. Two subjects had a complete erythroid response and five had a partial response. Nine of 25, and 11 of 25, subjects experienced a positive weight and height percentile change, respectively, at the end of therapy. CONCLUSIONS: L-leucine is safe, resulted in an erythroid response in 16% of subjects with DBA, and led to an increase in weight and linear growth velocity in 36% and 44% of evaluable subjects, respectively. Further studies will be critical to understand the role of L-leucine in the management of patients with DBA.


Subject(s)
Anemia, Diamond-Blackfan/therapy , Blood Transfusion/methods , Leucine/therapeutic use , Adolescent , Adult , Anemia, Diamond-Blackfan/pathology , Child , Child, Preschool , Combined Modality Therapy , Feasibility Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged , Pilot Projects , Prognosis , Young Adult
15.
16.
Elife ; 82019 12 13.
Article in English | MEDLINE | ID: mdl-31833833

ABSTRACT

Metastasis is the main cause of death in cancer patients but remains a poorly understood process. Small cell lung cancer (SCLC) is one of the most lethal and most metastatic cancer types. SCLC cells normally express neuroendocrine and neuronal gene programs but accumulating evidence indicates that these cancer cells become relatively more neuronal and less neuroendocrine as they gain the ability to metastasize. Here we show that mouse and human SCLC cells in culture and in vivo can grow cellular protrusions that resemble axons. The formation of these protrusions is controlled by multiple neuronal factors implicated in axonogenesis, axon guidance, and neuroblast migration. Disruption of these axon-like protrusions impairs cell migration in culture and inhibits metastatic ability in vivo. The co-option of developmental neuronal programs is a novel molecular and cellular mechanism that contributes to the high metastatic ability of SCLC.


Subject(s)
Cell Movement , Cell Surface Extensions/metabolism , Lung Neoplasms/physiopathology , Neoplasm Metastasis/physiopathology , Small Cell Lung Carcinoma/physiopathology , Animals , Humans , Mice , Tumor Cells, Cultured
17.
Pediatr Hematol Oncol ; 36(4): 236-243, 2019 May.
Article in English | MEDLINE | ID: mdl-31361176

ABSTRACT

Here we report a case of refractory macrocytic anemia with a spliceosomal point mutation involving the ZRSR2 gene in a child with Down syndrome (DS). Such mutations have been shown to cause refractory macrocytic anemia and myelodysplastic syndrome (MDS) in elderly individuals. We report the hematological indices of a child with DS and a ZRSR2 spliceosomal mutation. DS is known to produce macrocytic anemia but does not lead to transfusion dependence. In this case, the ZRSR2 mutation was the likely implicating factor for severe transfusion-dependent anemia in a child with DS. The clinical implication of a ZRSR2 mutation in a child with DS has not been previously described and warrants close surveillance to detect potential insidious transformation to MDS.


Subject(s)
Anemia, Macrocytic/genetics , Down Syndrome/genetics , Point Mutation , Ribonucleoproteins/genetics , Anemia, Macrocytic/blood , Anemia, Macrocytic/therapy , Child , Down Syndrome/blood , Down Syndrome/therapy , Humans , Male , Ribonucleoproteins/metabolism
18.
Sci Rep ; 8(1): 14008, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30228296

ABSTRACT

Expression of the chromatin-associated protein HMGA2 correlates with progression, metastasis and therapy resistance in pancreatic ductal adenocarcinoma (PDAC). Hmga2 has also been identified as a marker of a transient subpopulation of PDAC cells that has increased metastatic ability. Here, we characterize the requirement for Hmga2 during growth, dissemination, and metastasis of PDAC in vivo using conditional inactivation of Hmga2 in well-established autochthonous mouse models of PDAC. Overall survival, primary tumour burden, presence of disseminated tumour cells in the peritoneal cavity or circulating tumour cells in the blood, and presence and number of metastases were not significantly different between mice with Hmga2-wildtype or Hmga2-deficient tumours. Treatment of mice with Hmga2-wildtype and Hmga2-deficient tumours with gemcitabine did not uncover a significant impact of Hmga2-deficiency on gemcitabine sensitivity. Hmga1 and Hmga2 overlap in their expression in both human and murine PDAC, however knockdown of Hmga1 in Hmga2-deficient cancer cells also did not decrease metastatic ability. Thus, Hmga2 remains a prognostic marker which identifies a metastatic cancer cell state in primary PDAC, however Hmga2 has limited if any direct functional impact on PDAC progression and therapy resistance.


Subject(s)
Adenocarcinoma/secondary , Carcinoma, Pancreatic Ductal/secondary , Cell Proliferation , Deoxycytidine/analogs & derivatives , Drug Resistance, Neoplasm , HMGA2 Protein/metabolism , Pancreatic Neoplasms/pathology , Adenocarcinoma/drug therapy , Adenocarcinoma/metabolism , Animals , Antimetabolites, Antineoplastic/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Deoxycytidine/pharmacology , HMGA2 Protein/genetics , Humans , Mice , Mice, Knockout , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Prognosis , Survival Rate , Tissue Array Analysis , Tumor Cells, Cultured , Gemcitabine
19.
Cancer Discov ; 7(10): 1184-1199, 2017 10.
Article in English | MEDLINE | ID: mdl-28790031

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most metastatic and deadly cancers. Despite the clinical significance of metastatic spread, our understanding of molecular mechanisms that drive PDAC metastatic ability remains limited. By generating a genetically engineered mouse model of human PDAC, we uncover a transient subpopulation of cancer cells with exceptionally high metastatic ability. Global gene expression profiling and functional analyses uncovered the transcription factor BLIMP1 as a driver of PDAC metastasis. The highly metastatic PDAC subpopulation is enriched for hypoxia-induced genes, and hypoxia-mediated induction of BLIMP1 contributes to the regulation of a subset of hypoxia-associated gene expression programs. These findings support a model in which upregulation of BLIMP1 links microenvironmental cues to a metastatic stem cell character.Significance: PDAC is an almost uniformly lethal cancer, largely due to its tendency for metastasis. We define a highly metastatic subpopulation of cancer cells, uncover a key transcriptional regulator of metastatic ability, and define hypoxia as an important factor within the tumor microenvironment that increases metastatic proclivity. Cancer Discov; 7(10); 1184-99. ©2017 AACR.See related commentary by Vakoc and Tuveson, p. 1067This article is highlighted in the In This Issue feature, p. 1047.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Gene Expression Profiling/methods , Pancreatic Neoplasms/pathology , Positive Regulatory Domain I-Binding Factor 1/genetics , Sequence Analysis, RNA/methods , Up-Regulation , Animals , Carcinoma, Pancreatic Ductal/genetics , Cell Hypoxia , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Genetic Engineering , Humans , Mice , Neoplasm Metastasis , Neoplasm Transplantation , Pancreatic Neoplasms/genetics , Tumor Microenvironment
20.
Nat Med ; 23(3): 291-300, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28191885

ABSTRACT

Lung cancer is the leading cause of cancer deaths worldwide, with the majority of mortality resulting from metastatic spread. However, the molecular mechanism by which cancer cells acquire the ability to disseminate from primary tumors, seed distant organs, and grow into tissue-destructive metastases remains incompletely understood. We combined tumor barcoding in a mouse model of human lung adenocarcinoma with unbiased genomic approaches to identify a transcriptional program that confers metastatic ability and predicts patient survival. Small-scale in vivo screening identified several genes, including Cd109, that encode novel pro-metastatic factors. We uncovered signaling mediated by Janus kinases (Jaks) and the transcription factor Stat3 as a critical, pharmacologically targetable effector of CD109-driven lung cancer metastasis. In summary, by coupling the systematic genomic analysis of purified cancer cells in distinct malignant states from mouse models with extensive human validation, we uncovered several key regulators of metastatic ability, including an actionable pro-metastatic CD109-Jak-Stat3 axis.


Subject(s)
Adenocarcinoma/genetics , Antigens, CD/genetics , Gene Expression Regulation, Neoplastic/genetics , Janus Kinases/genetics , Lung Neoplasms/genetics , Neoplasm Proteins/genetics , STAT3 Transcription Factor/genetics , Adenocarcinoma/metabolism , Animals , Blotting, Western , Cell Line, Tumor , Disease Models, Animal , Gene Knockdown Techniques , Janus Kinase 1/genetics , Janus Kinase 3/genetics , Lung Neoplasms/metabolism , Mice , Molecular Targeted Therapy , Neoplasm Metastasis/genetics , Polymerase Chain Reaction , Protein Kinase Inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...