Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
Braz J Med Biol Res ; 38(3): 353-9, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15761614

ABSTRACT

The stabilizing effects of staphylococcal nuclease (Nuc) and of a synthetic propeptide (LEISSTCDA, hereafter called LEISS) on the production of a model food allergen, bovine beta-lactoglobulin (BLG), in Lactococcus lactis were investigated. The fusion of Nuc to BLG (Nuc-BLG) results in higher production and secretion of the hybrid protein. When LEISS was fused to BLG, the production of the resulting protein LEISS-BLG was only slightly improved compared to the one obtained with Nuc-BLG. However, the secretion of LEISS-BLG was dramatically enhanced (approximately 10- and 4-fold higher than BLG and Nuc-BLG, respectively). Finally, the fusion of LEISS to Nuc-BLG resulting in the protein LEISS-Nuc-BLG led to the highest production of the hybrid protein, estimated at approximately 8 microg/ml (approximately 2-fold higher than Nuc-BLG). In conclusion, the fusions described here led to the improvement of the production and secretion of BLG. These tools will be used to modulate the immune response against BLG via delivery of recombinant lactococci at the mucosal level, in a mouse model of cow's milk allergy.


Subject(s)
Lactococcus lactis/metabolism , Lactoglobulins/biosynthesis , Micrococcal Nuclease/metabolism , Oligopeptides/metabolism , Animals , Cattle , Disease Models, Animal , Lactococcus lactis/immunology , Lactoglobulins/immunology , Mice , Micrococcal Nuclease/immunology , Milk Hypersensitivity/immunology , Oligopeptides/immunology , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism
2.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;38(3): 353-359, mar. 2005. ilus, tab, graf
Article in English | LILACS | ID: lil-394811

ABSTRACT

The stabilizing effects of staphylococcal nuclease (Nuc) and of a synthetic propeptide (LEISSTCDA, hereafter called LEISS) on the production of a model food allergen, bovine ß-lactoglobulin (BLG), in Lactococcus lactis were investigated. The fusion of Nuc to BLG (Nuc-BLG) results in higher production and secretion of the hybrid protein. When LEISS was fused to BLG, the production of the resulting protein LEISS-BLG was only slightly improved compared to the one obtained with Nuc-BLG. However, the secretion of LEISS-BLG was dramatically enhanced (~10- and 4-fold higher than BLG and Nuc-BLG, respectively). Finally, the fusion of LEISS to Nuc-BLG resulting in the protein LEISS-Nuc-BLG led to the highest production of the hybrid protein, estimated at ~8 æg/ml (~2-fold higher than Nuc-BLG). In conclusion, the fusions described here led to the improvement of the production and secretion of BLG. These tools will be used to modulate the immune response against BLG via delivery of recombinant lactococci at the mucosal level, in a mouse model of cow's milk allergy.


Subject(s)
Animals , Cattle , Mice , Lactococcus lactis/metabolism , Lactoglobulins/biosynthesis , Micrococcal Nuclease/metabolism , Oligopeptides/metabolism , Disease Models, Animal , Lactococcus lactis/immunology , Lactoglobulins/immunology , Micrococcal Nuclease/immunology , Milk Hypersensitivity/immunology , Oligopeptides/immunology , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism
3.
Appl Microbiol Biotechnol ; 65(1): 61-7, 2004 Jul.
Article in English | MEDLINE | ID: mdl-14758518

ABSTRACT

The genetic improvement of Lactococcus lactis is a matter of biotechnological interest in the food industry and in the pharmaceutical and medical fields. However, to construct a food-grade delivery system, both the presence of antibiotic markers or plasmid sequences should be avoided and the maintenance and expression of the cloned gene should be guaranteed. The objective of this work was to produce crossover mutants of L. lactis with a reporter gene under the control of an inducible promoter in order to evaluate the level of gene expression. We utilized a nuclease gene of Staphylococcus aureus as a reporter gene, P(nisA) as the nisin-inducible promoter, a non-essential gene involved in histidine biosynthesis of L. lactis as the site for homologous recombination, and pRV300 as a suicide vector for the genomic integration in L. lactis NZ9000. Single- and double-crossover mutants were identified by genotype and phenotype. Relative to episomal transformants of L. lactis, the level of expression of the heterologous protein after nisin induction was similar in the crossover mutants, suggesting that a single copy of the heterologous gene can be used to produce the protein of interest.


Subject(s)
Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Lactococcus lactis/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Gene Transfer Techniques , Genetic Vectors/genetics , Lactococcus lactis/metabolism , Nisin/pharmacology , Plasmids/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL