Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
J Phys Chem Lett ; 15(18): 4823-4827, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38668706

ABSTRACT

Amphotericin B is a popular antifungal antibiotic, but the exact way it works is still a matter of debate. Here, we used monolayers composed of phosphatidylcholine with ergosterol as a model of fungal lipid membranes to study drug incorporation from the aqueous phase and analyze the molecular reorganization of membranes underlying the biological activity of the antibiotic. The results show that the internalization of antibiotic molecules into membranes occurs only in the presence of ergosterol in the lipid phase. Comparison of images of solid-supported monolayers obtained by atomic force microscopy and lifetime imaging fluorescence microscopy shows the formation of intramembrane clusters of various sizes in the lipid phase, consisting mainly of antibiotic dimers and relatively large membrane pores (∼15 nm in diameter). The results reveal multiple modes of action of amphotericin B, acting simultaneously, each of which adversely affects the structural properties of the lipid membranes and their physiological functionality.


Subject(s)
Amphotericin B , Phosphatidylcholines , Amphotericin B/chemistry , Phosphatidylcholines/chemistry , Ergosterol/chemistry , Antifungal Agents/chemistry , Microscopy, Atomic Force , Anti-Bacterial Agents/chemistry , Cell Membrane/chemistry , Microscopy, Fluorescence
2.
Arch Biochem Biophys ; 752: 109883, 2024 02.
Article in English | MEDLINE | ID: mdl-38211638

ABSTRACT

Free fatty acids, like palmitic acid (PA), and xanthophyll pigments, like lutein (LUT) are the natural membrane compounds in plants. To study the effect of PA on LUT and their organization, a model membrane of 1,2-dimyristoyl-sn-glycerol-3-phosphocholine (DMPC) enriched with 2 mol% PA and 1 mol% LUT was formed. Molecular mechanisms underlying the interaction between these two compounds were examined with application of molecular spectroscopy techniques, e.g., visible spectroscopy, electron paramagnetic resonance and Fourier transform infrared. We determined the monomeric/dimeric organization of LUT in the membrane. We proved that the presence of PA in the lipid phase facilitated and stabilized the formation of LUT structures in the membrane. Lutein with PA did not form strong molecular aggregates like H- and J-structures. We presented the simplified model membrane that could be a suitable representation of the physiological process of de-esterification of PA from LUT appearing in natural biomembranes in humans.


Subject(s)
Lutein , Xanthophylls , Humans , Lutein/pharmacology , Lutein/chemistry , Electron Spin Resonance Spectroscopy , Palmitic Acids , Lipids , Lipid Bilayers/chemistry , Dimyristoylphosphatidylcholine/chemistry
3.
Int J Mol Sci ; 24(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834049

ABSTRACT

Legionella pneumophila is the primary causative agent of Legionnaires' disease. The mutant-type strain interrupted in the ORF7 gene region responsible for the lipopolysaccharide biosynthesis of the L. pneumophila strain Heysham-1, lacking the O-acetyl groups attached to the rhamnose of the core part, showed a higher surface polarity compared with the wild-type strain. The measurement of excitation energy transfer between fluorophores located on the surface of bacteria and eukaryotic cells showed that, at an early stage of interaction with host cells, the mutant exhibited weaker interactions with Acanthamoeba castellanii cells and THP-1-derived macrophages. The mutant displayed reduced adherence to macrophages but enhanced adherence to A. castellanii, suggesting that the O-acetyl group of the LPS core region plays a crucial role in facilitating interaction with macrophages. The lack of core rhamnose O-acetyl groups made it easier for the bacteria to multiply in amoebae and macrophages. The mutant induced TNF-α production more strongly compared with the wild-type strain. The mutant synthesized twice as many ceramides Cer(t34:0) and Cer(t38:0) than the wild-type strain. The study showed that the internal sugars of the LPS core region of L. pneumophila sg 1 can interact with eukaryotic cell surface receptors and mediate in contacting and attaching bacteria to host cells as well as modulating the immune response to infection.


Subject(s)
Legionella pneumophila , Legionnaires' Disease , Humans , Legionella pneumophila/genetics , Lipopolysaccharides/metabolism , Rhamnose/metabolism , Serogroup , Bacterial Proteins/metabolism
4.
Int J Mol Sci ; 24(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37894955

ABSTRACT

In this report, we discuss the effects of undescribed flavone derivatives, HZ4 and SP9, newly isolated from the aerial parts of Hottonia palustris L. and Scleranthus perennis L. on membranes. Interaction of flavonoids with lipid bilayers is important for medicinal applications. The experiments were performed with FTIR and NMR techniques on liposomes prepared from DPPC (dipalmitoylphosphatidylcholine) and EYPC (egg yolk phosphatidylcholine). The data showed that the examined polyphenols incorporate into the polar head group region of DPPC phospholipids at both 25 °C and 45 °C. At the lower temperature, a slight effect in the spectral region of the ester carbonyl group is observed. In contrast, at 45 °C, both compounds bring about the changes in the spectral regions attributed to antisymmetric and symmetric stretching vibrations of CH2 and CH3 moieties. Similarly, as in DPPC lipids, the tested compounds interact with the fingerprint region of the polar head groups of the EYPC lipids and cause its reorganization. The outcomes obtained by NMR analyses confirmed the localization of both flavonoids in the polar heads zone. Unraveled effects of HZ4 and SP9 in respect to lipid bilayers can partly determine their biological activities and are crucial for their usability in medicine as disease-preventing phytochemicals.


Subject(s)
Flavonoids , Lipid Bilayers , Lipid Bilayers/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Liposomes/chemistry , Magnetic Resonance Spectroscopy , 1,2-Dipalmitoylphosphatidylcholine/chemistry
5.
J Phys Chem Lett ; 14(33): 7440-7444, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37578906

ABSTRACT

Here, we address the problem of the antioxidant activity of carotenoids in biomembranes. The activity of lutein and zeaxanthin in the quenching of singlet oxygen generated by photosensitization was monitored in lipid vesicles using a singlet oxygen-sensitive fluorescent probe and with the application of fluorescence lifetime imaging microscopy. The antioxidant activity of xanthophylls was interpreted on the basis of electron paramagnetic resonance oximetry results showing that xanthophylls constitute a barrier to the penetration of molecular oxygen into lipid membranes: to a greater extent in the 13-cis configuration than in all-trans. These results are discussed in relation to the trans-cis photoisomerization of xanthophylls observed in the human retina. It can be concluded that photoisomerization of xanthophylls is a regulatory mechanism that is important for both the modulation of light filtration through the macula and photoprotection by quenching singlet oxygen and creating a barrier to oxygen permeation to membranes.


Subject(s)
Antioxidants , Xanthophylls , Humans , Xanthophylls/metabolism , Singlet Oxygen , Oxidative Stress , Oxygen , Lipids
6.
Int J Mol Sci ; 24(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569419

ABSTRACT

Legionella gormanii is a fastidious, Gram-negative bacterium known to be the etiological agent of atypical community-acquired pneumonia. The human cathelicidin LL-37 exhibits a dose-dependent bactericidal effect on L. gormanii. The LL-37 peptide at the concentration of 10 µM causes the bacteria to become viable but not cultured. The antibacterial activity of the peptide is attributed to its effective binding to the bacterial membrane, as demonstrated by the fluorescence lifetime imaging microscopy. In this study, to mimic the L. gormanii membranes and their response to the antimicrobial peptide, Langmuir monolayers were used with the addition of the LL-37 peptide to the subphase of the Langmuir trough to represent the extracellular fluid. The properties of the model membranes (Langmuir monolayers) formed by phospholipids (PL) isolated from the L. gormanii bacteria cultured on the non-supplemented (PL-choline) and choline-supplemented (PL+choline) medium were determined, along with the effect of the LL-37 peptide on the intermolecular interactions, packing, and ordering under the monolayer compression. Penetration tests at the constant surface pressure were carried out to investigate the mechanism of the LL-37 peptide action on the model membranes. The peptide binds to the anionic bacterial membranes preferentially, due to its positive charge. Upon binding, the LL-37 peptide can penetrate into the hydrophobic tails of phospholipids, destabilizing membrane integrity. The above process can entail membrane disruption and ultimately cell death. The ability to evoke such a great membrane destabilization is dependent on the share of electrostatic, hydrogen bonding and Lifshitz-van der Waals LL-37-PL interactions. Thus, the LL-37 peptide action depends on the changes in the lipid membrane composition caused by the utilization of exogenous choline by the L. gormanii.


Subject(s)
Legionella , Humans , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Bacteria/metabolism , Cathelicidins/pharmacology , Choline/pharmacology , Phospholipids/pharmacology
7.
Int J Mol Sci ; 24(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37445880

ABSTRACT

Zeaxanthin and lutein are xanthophyll pigments present in the human retina and particularly concentrated in its center referred to as the yellow spot (macula lutea). The fact that zeaxanthin, including its isomer meso-zeaxanthin, is concentrated in the central part of the retina, in contrast to lutein also present in the peripheral regions, raises questions about the possible physiological significance of such a heterogeneous distribution of macular xanthophylls. Here, we attempt to address this problem using resonance Raman spectroscopy and confocal imaging, with different laser lines selected to effectively distinguish the spectral contribution of lutein and zeaxanthin. Additionally, fluorescence lifetime imaging microscopy (FLIM) is used to solve the problem of xanthophyll localization in the axon membranes. The obtained results allow us to conclude that one of the key advantages of a particularly high concentration of zeaxanthin in the central part of the retina is the high efficiency of this pigment in the dynamic filtration of light with excessive intensity, potentially harmful for the photoreceptors.


Subject(s)
Lutein , Macula Lutea , Humans , Lutein/chemistry , Zeaxanthins , beta Carotene , Retina/chemistry , Xanthophylls/analysis , Macula Lutea/chemistry
8.
Molecules ; 28(12)2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37375242

ABSTRACT

Amphotericin B is a popular antifungal antibiotic, and despite decades of pharmacological application, the exact mode of its biological activity is still a matter of debate. Amphotericin B-silver hybrid nanoparticles (AmB-Ag) have been reported to be an extremely effective form of this antibiotic to combat fungi. Here, we analyze the interaction of AmB-Ag with C. albicans cells with the application of molecular spectroscopy and imaging techniques, including Raman scattering and Fluorescence Lifetime Imaging Microscopy. The results lead to the conclusion that among the main molecular mechanisms responsible for the antifungal activity of AmB is the disintegration of the cell membrane, which occurs on a timescale of minutes.


Subject(s)
Amphotericin B , Nanoparticles , Amphotericin B/pharmacology , Amphotericin B/chemistry , Anti-Bacterial Agents/analysis , Silver/chemistry , Antifungal Agents/chemistry , Cell Membrane/metabolism , Nanoparticles/chemistry , Candida albicans
9.
J Phys Chem B ; 127(16): 3632-3640, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37071547

ABSTRACT

Amphotericin B (AmB) is a life-saving and widely used antifungal antibiotic, but its therapeutic applicability is limited due to severe side effects. Here, we report that the formulation of the drug based on a complex with albumin (BSA) is highly effective against Candida albicans at relatively low concentrations, which implies lower toxicity to patients. This was also concluded based on the comparison with antifungal activities of other popular commercial formulations of the drug, such as Fungizone and AmBisome. Several molecular spectroscopy and imaging techniques, e.g., fluorescence lifetime imaging microscopy (FLIM), were applied to understand the phenomenon of enhanced antifungal activity of the AmB-BSA complex. The results show that the drug molecules bound to the protein remain mostly monomeric and are most likely bound in the pocket responsible for the capture of small molecules by this transport protein. The results of molecular imaging of single complex particles indicate that in most cases, the antibiotic-protein stoichiometry is 1:1. All of the analyses of the AmB-BSA system exclude the presence of the antibiotic aggregates potentially toxic to patients. Cell imaging shows that BSA-bound AmB molecules can readily bind to fungal cell membranes, unlike drug molecules present in the aqueous phase, which are effectively retained by the cell wall barrier. The advantages and prospects of pharmacological use of AmB complexed with proteins are discussed.


Subject(s)
Amphotericin B , Antifungal Agents , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Amphotericin B/pharmacology , Amphotericin B/chemistry , Candida albicans , Albumins , Anti-Bacterial Agents/pharmacology
10.
Plant J ; 115(1): 7-17, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36994646

ABSTRACT

The safe and smooth functioning of photosynthesis in plants is ensured by the operation of numerous regulatory mechanisms that adjust the density of excitation resulting from photon absorption to the capabilities of the photosynthetic apparatus. Such mechanisms include the movement of chloroplasts inside cells and the quenching of electronic excitations in the pigment-protein complexes. Here, we address the problem of a possible cause-and-effect relationship between these two mechanisms. Both the light-induced chloroplast movements and quenching of chlorophyll excitations were analyzed simultaneously with the application of fluorescence lifetime imaging microscopy of Arabidopsis thaliana leaves, wild-type and impaired in chloroplast movements or photoprotective excitation quenching. The results show that both regulatory mechanisms operate over a relatively wide range of light intensities. By contrast, impaired chloroplast translocations have no effect on photoprotection at the molecular level, indicating the direction of information flow in the coupling of these two regulatory mechanisms: from the photosynthetic apparatus to the cellular level. The results show also that the presence of the xanthophyll zeaxanthin is necessary and sufficient for the full development of photoprotective quenching of excessive chlorophyll excitations in plants.


Subject(s)
Arabidopsis , Chloroplasts , Chloroplasts/metabolism , Photosynthesis , Chlorophyll/metabolism , Xanthophylls/metabolism
11.
Biochim Biophys Acta Biomembr ; 1865(4): 184142, 2023 04.
Article in English | MEDLINE | ID: mdl-36848998

ABSTRACT

The aim of this study was to characterize, for the first time, the interactions, location, and influence of flavonoids isolated from aerial parts of Scleranthus perennis (Caryophyllaceae) and Hottonia palustris (Primulaceae) on the properties of model lipid membranes prepared from dipalmitoylphosphatidylcholine (DPPC) and egg yolk phosphatidylcholine (EYPC). The tested compounds incorporated into liposomes into the region of the polar heads or at the water/membrane interface of DPPC phospholipids. Spectral effects accompanying the presence of polyphenols revealed their effect on ester carbonyl groups apart from SP8. All polyphenols brought about reorganization of the polar zone of liposomes as it was observed by FTIR technique. Additionally, fluidization effect was noted in the region of symmetric and antisymmetric stretching vibrations of the CH2 and CH3 groups with exception to HZ2 and HZ3. Similarly, in EYPC liposomes, they interacted mainly with the regions of the choline heads of the lipids and had various effects on the carbonyl ester groups with exception to SP8. The region of polar head groups is restructured due to the presence of the additives in liposomes. The outcomes obtained using the NMR technique confirmed the locations of all of the tested compounds in the polar zone and indicated a flavonoid-dependent modifying effect towards lipid membranes. HZ1 and SP8 raised motional freedom in this region whereas opposite effect was revealed for HZ2 and HZ3. In the hydrophobic region restricted mobility was noted. In this report we discuss the mechanism of previously undescribed flavonoids in terms of their actions on membranes.


Subject(s)
Caryophyllaceae , Primulaceae , Liposomes/chemistry , Flavonoids , Phospholipids , Plant Components, Aerial
12.
Int J Mol Sci ; 23(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36361822

ABSTRACT

MAGE (melibiose-derived advanced glycation end-product) is the glycation product generated in the reaction of a model protein with melibiose. The in vivo analog accumulates in several tissues; however, its origin still needs explanation. In vitro MAGE is efficiently generated under dry conditions in contrast to the reaction carried in an aqueous solvent. Using liquid chromatography coupled with mass spectrometry, we analyzed the physicochemical properties and structures of myoglobin glycated with melibiose under different conditions. The targeted peptide analysis identified structurally different AGEs, including crosslinking and non-crosslinking modifications associated with lysine, arginine, and histidine residues. Glycation in a dry state was more efficient in the formation of structures containing an intact melibiose moiety (21.9%) compared to glycation under aqueous conditions (15.6%). The difference was reflected in characteristic fluorescence that results from protein structural changes and impact on a heme group of the model myoglobin protein. Finally, our results suggest that the formation of in vitro MAGE adduct is initiated by coupling melibiose to a model myoglobin protein. It is confirmed by the identification of intact melibiose moieties. The intermediate glycation product can further rearrange towards more advanced structures, including cross-links. This process can contribute to a pool of AGEs accumulating locally in vivo and affecting tissue biology.


Subject(s)
Glycation End Products, Advanced , Myoglobin , Myoglobin/chemistry , Glycation End Products, Advanced/metabolism , Melibiose , Lysine/metabolism , Glycosylation
13.
Int J Mol Sci ; 23(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35682729

ABSTRACT

The effect of the chemical structure of selected phenolic acids on the molecular organization of gliadins was investigated with the application of Fourier Transform Infrared (FTIR) technique, steady-state, and time-resolved fluorescence spectroscopy. Hydroxybenzoic (4-hydroxybenzoic, protocatechuic, vanillic, and syringic) and hydroxycinnamic (coumaric, caffeic, ferulic, sinapic) acids have been used as gliadins modifiers. The results indicated that hydroxybenzoic acids due to their smaller size incorporate into spaces between two polypeptide chains and form a hydrogen bond with them leading to aggregation. Additionally, syringic acids could incorporate into hydrophobic pockets of protein. Whereas hydroxycinnamic acids, due to their higher stiffness and larger size, separated polypeptide chains leading to gliadin disaggregation. These acids did not incorporate into hydrophobic pockets.


Subject(s)
Gliadin , Hydroxybenzoates , Coumaric Acids
14.
Materials (Basel) ; 15(11)2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35683290

ABSTRACT

In the animal kingdom, continuously erupting incisors provided an attractive model for studying the enamel matrix and mineral composition of teeth during development. Enamel, the hardest mineral tissue in the vertebrates, is a tissue sensitive to external conditions, reflecting various disturbances in its structure. The developing dental enamel was monitored in a series of incisor samples extending the first four weeks of postnatal life in the spiny mouse. The age-dependent changes in enamel surface morphology in the micrometre and nanometre-scale and a qualitative assessment of its mechanical features were examined by applying scanning electron microscopy (SEM) and atomic force microscopy (AFM). At the same time, structural studies using XRD and vibrational spectroscopy made it possible to assess crystallinity and carbonate content in enamel mineral composition. Finally, a model for predicting the maturation based on chemical composition and structural factors was constructed using artificial neural networks (ANNs). The research presented here can extend the existing knowledge by proposing a pattern of enamel development that could be used as a comparative material in environmental, nutritional, and pharmaceutical research.

15.
Cancers (Basel) ; 13(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072003

ABSTRACT

AIM: The anti-glioma effect of lensoside Aß alone and in combination with sorafenib (pro-survival Raf kinase inhibitor) was evaluated for the first time in terms of programmed cell death induction in anaplastic astrocytoma and glioblastoma multiforme cell lines as an experimental model. Apoptosis, autophagy, and necrosis were identified microscopically (fluorescence and scanning microscopes) and confirmed by flow cytometry (mitochondrial membrane potential MMP and cell death). The expression of apoptotic (caspase 3) and autophagic markers (beclin 1) as well as Raf kinase were estimated by immunoblotting. The FTIR method was used to determine the interaction of the studied drugs with lipid and protein groups within cells, while the modes of drug action within the cells were assessed with the FLIM technique. RESULTS: Lensoside Aß itself does not exhibit anti-glioma activity but significantly enhances the anti-cancer potential of sorafenib, initiating mainly apoptosis of up to 90% of cells. It was correlated with an increased level of active caspase 3, a reduced MMP value, and a lower level of Raf kinase. The interaction with membrane structures led to morphological changes typical of programmed death. CONCLUSIONS: Our results indicate that lensoside Aß plays an important role as an adjuvant in chemotherapy with sorafenib and may be a potential candidate in anti-glioma combination therapy.

16.
J Phys Chem B ; 125(23): 6090-6102, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34038114

ABSTRACT

The functioning of the human eye in the extreme range of light intensity requires a combination of the high sensitivity of photoreceptors with their photostability. Here, we identify a regulatory mechanism based on dynamic modulation of light absorption by xanthophylls in the retina, realized by reorientation of pigment molecules induced by trans-cis photoisomerization. We explore this photochemically switchable system using chromatographic analysis coupled with microimaging based on fluorescence lifetime and Raman scattering, showing it at work in both isolated human retina and model lipid membranes. The molecular mechanism underlying xanthophyll reorientation is explained in terms of hydrophobic mismatch using molecular dynamics simulations. Overall, we show that xanthophylls in the human retina act as "molecular blinds", opening and closing on a submillisecond timescale to dynamically control the intensity of light reaching the photoreceptors, thus enabling vision at a very low light intensity and protecting the retina from photodegradation when suddenly exposed to strong light.


Subject(s)
Retina , Sunscreening Agents , Humans , Lutein , Spectrum Analysis, Raman , Xanthophylls
17.
Antioxidants (Basel) ; 10(4)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919673

ABSTRACT

Macular xanthophylls, which are absorbed from the human diet, accumulate in high concentrations in the human retina, where they efficiently protect against oxidative stress that may lead to retinal damage. In addition, macular xanthophylls are uniquely spatially distributed in the retina. The zeaxanthin concentration (including the lutein metabolite meso-zeaxanthin) is ~9-fold greater than lutein concentration in the central fovea. These numbers do not correlate at all with the dietary intake of xanthophylls, for which there is a dietary zeaxanthin-to-lutein molar ratio of 1:12 to 1:5. The unique spatial distributions of macular xanthophylls-lutein, zeaxanthin, and meso-zeaxanthin-in the retina, which developed during evolution, maximize the protection of the retina provided by these xanthophylls. We will correlate the differences in the spatial distributions of macular xanthophylls with their different antioxidant activities in the retina. Can the major protective function of macular xanthophylls in the retina, namely antioxidant actions, explain their evolutionarily determined, unique spatial distributions? In this review, we will address this question.

18.
Plant J ; 107(2): 418-433, 2021 07.
Article in English | MEDLINE | ID: mdl-33914375

ABSTRACT

Safe operation of photosynthesis is vital to plants and is ensured by the activity of processes protecting chloroplasts against photo-damage. The harmless dissipation of excess excitation energy is considered to be the primary photoprotective mechanism and is most effective in the combined presence of PsbS protein and zeaxanthin, a xanthophyll accumulated in strong light as a result of the xanthophyll cycle. Here we address the problem of specific molecular mechanisms underlying the synergistic effect of zeaxanthin and PsbS. The experiments were conducted with Arabidopsis thaliana, using wild-type plants, mutants lacking PsbS (npq4), and mutants affected in the xanthophyll cycle (npq1), with the application of molecular spectroscopy and imaging techniques. The results lead to the conclusion that PsbS interferes with the formation of densely packed aggregates of thylakoid membrane proteins, thus allowing easy exchange and incorporation of xanthophyll cycle pigments into such structures. It was found that xanthophylls trapped within supramolecular structures, most likely in the interfacial protein region, determine their photophysical properties. The structures formed in the presence of violaxanthin are characterized by minimized dissipation of excitation energy. In contrast, the structures formed in the presence of zeaxanthin show enhanced excitation quenching, thus protecting the system against photo-damage.


Subject(s)
Arabidopsis Proteins/metabolism , Light-Harvesting Protein Complexes/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Zeaxanthins/metabolism , Arabidopsis/metabolism , Chlorophyll/metabolism , Energy Metabolism , Light , Microscopy, Fluorescence , Plant Leaves/metabolism , Spectrum Analysis, Raman , Thylakoids/metabolism , Thylakoids/radiation effects , Thylakoids/ultrastructure
19.
Chem Phys Lipids ; 235: 105059, 2021 03.
Article in English | MEDLINE | ID: mdl-33539791

ABSTRACT

Surfactants are commonly found in today's world as an essential component of cleaning detergents, cosmetics and drug delivery systems. They can penetrate into lipid membranes, thus changing their properties. The aim of this paper is to compare the effect of addition of small amounts of cationic (DTAB) and anionic surfactants (SDS) with the same alkyl chain length on the zeta potential of DPPC liposomes with their influence on the corresponding DPPC monolayers. It was found that the addition of ionic surfactants with an initial concentration in the solution equal to 2.3, 4.5 and 9.1 µM to the liposome suspension changes their electrokinetic potential significantly. These changes increase with the increasing surfactant concentration and are greater for the anionic surfactant. This indicates the incorporation of surfactants into the structure of liposomes. Based on the analysis of π-area isotherms of DPPC monolayers it was proved that the ionic surfactant molecules are irreversibly integrated into the DPPC monolayer.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Surface-Active Agents/chemistry , Ions/chemistry , Liposomes/chemistry , Particle Size , Surface Properties
20.
Nanoscale ; 13(6): 3686-3697, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33543744

ABSTRACT

Amphotericin B (AmB), one of the most powerful but also toxic drugs used to treat systemic mycoses, is believed to selectively permeabilize fungal cell membranes to ions in a sterol-dependent manner. Unfortunately, the structure of the biologically active AmB channels has long eluded researchers, obstructing the design of safer alternatives. Here, we investigate the structural and thermodynamic aspects of channel formation, stability, and selective ion conduction. We combine fluorescence lifetime imaging and molecular simulations to trace the process of channel assembly until the formation of stable, roughly octameric double-length channels (DLCs). This stoichiometry is confirmed by matching the predicted channel conductances with the past results of patch-clamp measurements. We then use free energy calculations to explain the effect of sterols on DLC stability and discuss the observed cation selectivity in structural terms, addressing several long-standing controversies in the context of their physiological relevance. Simulations of ion permeation indicate that only solvated ions pass through DLCs, revealing surprising solvation patterns in the channel lumen. We conclude our investigation by inspecting the role of the tail hydroxyl in the assembly of functional channels, pointing at possible origins of the cholesterol-ergosterol selectivity.


Subject(s)
Amphotericin B , Lipid Bilayers , Amphotericin B/pharmacology , Cell Membrane , Cholesterol , Ergosterol
SELECTION OF CITATIONS
SEARCH DETAIL
...